Abstract

We demonstrate a carrier-envelope-offset (CEO)- locked frequency comb with 230-pJ fiber coupling pulse energy by using a passively mode-locked Er-fiber amplifier laser. For the generation of an octave-bandwidth spectrum in a highly nonlinear fiber and the second harmonic in a self-referenced interferometer with the lower pulse energy, we use a tellurite photonic crystal fiber and a direct-bonded quasi-phase-matched LiNbO3 ridge waveguide, respectively. Our method is feasible for locking the CEO with a lower pulse energy to obtain a low-noise and high-accuracy optical frequency comb at telecommunications wavelengths.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, "Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 μm," Opt. Lett. 32, 307-309 (2007).
    [CrossRef] [PubMed]
  2. S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, "Coherent Optical Phase Transfer over a 32-km Fiber with 1 s Instability at 10-17," Phy. Rev. Lett. 99, 1536011-1536014 (2007).
    [CrossRef]
  3. W. C. Swann and N. R. Newbury, "Frequency-resolved coherent lidar using a femtosecond fiber laser," Opt. Lett. 31, 826-828 (2006).
    [CrossRef] [PubMed]
  4. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, "Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared," Opt. Lett. 29, 250-252 (2004).
    [CrossRef] [PubMed]
  5. N. R. Newbury and W. C. Swann, "Low-noise fiber-laser frequency combs (Invited)," J. Opt. Soc. Am. B 24, 1756-1770 (2007).
    [CrossRef]
  6. F. -L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto, T. Sugiura, and M. Yoshida, "Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second-harmonic generation of a mode-locked fiber laser," Opt. Lett. 28, 1516-1518 (2003).
    [CrossRef] [PubMed]
  7. K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, "Low-Crosstalk 10-GHz-Spaced 512-Channel Arrayed-Waveguide Grating Multi/Demultiplexer Fabricated on a 4-in Wafer," IEEE Photon Technol. Lett. 13, 1182-1184 (2001).
    [CrossRef]
  8. I. Hartl, G. Imeshev, M. E. Fermann, C. Langrock, and M. M. Fejer, "Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology," Opt. Express 13, 6490-6496 (2005).
    [CrossRef] [PubMed]
  9. A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, "1.5 μm band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient γ of 675 W-1km-1," ECOC2004 Th3. 3. 6 (2004).
  10. Highly nonlinear dispersion-shifted fiber fabricated by Sumitomo Electric Industries, Ltd. See http://www.sei.co.jp/tr_e/pdf/info/56-02.pdf.
  11. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999).
    [CrossRef]
  12. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, "Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature," Electron. Lett. 39, 609-611 (2003).
    [CrossRef]
  13. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  14. A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 2039011-2039014 (2001).
    [CrossRef]
  15. A. L. Gaeta, "Nonlinear propagation and continuum generation in microstructured optical fibers," Opt. Lett. 27, 924-926 (2002).
    [CrossRef]
  16. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, "Spectral shaping of supercontinuum in a cobweb photonic- crystal fiber with sub-20-fs pulses," J. Opt. Soc. Am. B 19, 2165-2170 (2002).
    [CrossRef]
  17. H. Hundertmark, D. Kracht, D. Wandt, C. Fallnich, V. V. R. K. Kumar, A. K. George, J. C. Knight, and P. St. J. Russel, "Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm," Opt. Express 11, 3196-3201 (2003).
    [CrossRef] [PubMed]
  18. H. Tsuchida, "Wideband phase-noise measurement of mode-locked laser pulses by a demodulation technique," Opt. Lett. 23, 286-288 (1998).
    [CrossRef]
  19. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, H. Takamiya, K. Nishijima, T. Homma, H. Takahashi, K. Okubo, S. Nakamura, and Y. Koyamada, "Carrier-envelope-phase stabilized chirped-pulse amplification system scalable to higher pulse energies," Opt. Express 12, 2070-2080 (2004).
    [CrossRef] [PubMed]
  20. S. Aozasa, A. Mori, M. Kato, K. Oikawa, M. Yamada, K. Naganuma, and H. Ono, "Enhancement of Nonlinear Effect in Tellurite Photonic Crystal Fibre Realized by Amplification with Er3+," ECOC2005 Tu 4. 4. 5 (2005).
  21. H. Hundertmark, D. Kracht, M. Engelbrecht, D. Wandt, C. Fallnich, "Stable sub-85 fs passively mode-locked Erbium-fiber oscillator with tunable repetition rate," Opt. Express 12, 3178-3183 (2004).
    [CrossRef] [PubMed]

2007 (3)

2006 (2)

W. C. Swann and N. R. Newbury, "Frequency-resolved coherent lidar using a femtosecond fiber laser," Opt. Lett. 31, 826-828 (2006).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

2005 (1)

2004 (3)

2003 (3)

2002 (2)

2001 (2)

A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 2039011-2039014 (2001).
[CrossRef]

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, "Low-Crosstalk 10-GHz-Spaced 512-Channel Arrayed-Waveguide Grating Multi/Demultiplexer Fabricated on a 4-in Wafer," IEEE Photon Technol. Lett. 13, 1182-1184 (2001).
[CrossRef]

1999 (1)

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999).
[CrossRef]

1998 (1)

Abe, M.

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, "Low-Crosstalk 10-GHz-Spaced 512-Channel Arrayed-Waveguide Grating Multi/Demultiplexer Fabricated on a 4-in Wafer," IEEE Photon Technol. Lett. 13, 1182-1184 (2001).
[CrossRef]

Aozasa, S.

A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, "1.5 μm band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient γ of 675 W-1km-1," ECOC2004 Th3. 3. 6 (2004).

S. Aozasa, A. Mori, M. Kato, K. Oikawa, M. Yamada, K. Naganuma, and H. Ono, "Enhancement of Nonlinear Effect in Tellurite Photonic Crystal Fibre Realized by Amplification with Er3+," ECOC2005 Tu 4. 4. 5 (2005).

Apolonski, A.

Asobe, M.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, "Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature," Electron. Lett. 39, 609-611 (2003).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

de Miranda, M. H. G.

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, "Coherent Optical Phase Transfer over a 32-km Fiber with 1 s Instability at 10-17," Phy. Rev. Lett. 99, 1536011-1536014 (2007).
[CrossRef]

Diddams, S. A.

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, "Coherent Optical Phase Transfer over a 32-km Fiber with 1 s Instability at 10-17," Phy. Rev. Lett. 99, 1536011-1536014 (2007).
[CrossRef]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, "Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared," Opt. Lett. 29, 250-252 (2004).
[CrossRef] [PubMed]

Drexler, W.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Dunlop, A. E.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999).
[CrossRef]

Enbutsu, K.

A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, "1.5 μm band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient γ of 675 W-1km-1," ECOC2004 Th3. 3. 6 (2004).

Engelbrecht, M.

Fallnich, C.

Fejer, M. M.

Fermann, M. E.

Foreman, S. M.

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, "Coherent Optical Phase Transfer over a 32-km Fiber with 1 s Instability at 10-17," Phy. Rev. Lett. 99, 1536011-1536014 (2007).
[CrossRef]

Gaeta, A. L.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

George, A. K.

Hartl, I.

Herrmann, J.

A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 2039011-2039014 (2001).
[CrossRef]

Hirai, A.

Homma, T.

Hong, F. -L.

Hudson, D. D.

Hundertmark, H.

Husakou, A. V.

A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 2039011-2039014 (2001).
[CrossRef]

Imeshev, G.

Inaba, H.

Ishii, M.

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, "Low-Crosstalk 10-GHz-Spaced 512-Channel Arrayed-Waveguide Grating Multi/Demultiplexer Fabricated on a 4-in Wafer," IEEE Photon Technol. Lett. 13, 1182-1184 (2001).
[CrossRef]

Jørgensen, C. G.

Kakehata, M.

Kato, M.

S. Aozasa, A. Mori, M. Kato, K. Oikawa, M. Yamada, K. Naganuma, and H. Ono, "Enhancement of Nonlinear Effect in Tellurite Photonic Crystal Fibre Realized by Amplification with Er3+," ECOC2005 Tu 4. 4. 5 (2005).

A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, "1.5 μm band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient γ of 675 W-1km-1," ECOC2004 Th3. 3. 6 (2004).

Keller, U.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999).
[CrossRef]

Knight, J. C.

Kobayashi, Y.

Koyamada, Y.

Kracht, D.

Kumar, V. V. R. K.

Langrock, C.

Lasri, J.

Ludlow, A. D.

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, "Coherent Optical Phase Transfer over a 32-km Fiber with 1 s Instability at 10-17," Phy. Rev. Lett. 99, 1536011-1536014 (2007).
[CrossRef]

Matsumoto, H.

Minoshima, K.

Miyazawa, H.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, "Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature," Electron. Lett. 39, 609-611 (2003).
[CrossRef]

Moll, K. D.

Mori, A.

A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, "1.5 μm band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient γ of 675 W-1km-1," ECOC2004 Th3. 3. 6 (2004).

S. Aozasa, A. Mori, M. Kato, K. Oikawa, M. Yamada, K. Naganuma, and H. Ono, "Enhancement of Nonlinear Effect in Tellurite Photonic Crystal Fibre Realized by Amplification with Er3+," ECOC2005 Tu 4. 4. 5 (2005).

Naganuma, K.

S. Aozasa, A. Mori, M. Kato, K. Oikawa, M. Yamada, K. Naganuma, and H. Ono, "Enhancement of Nonlinear Effect in Tellurite Photonic Crystal Fibre Realized by Amplification with Er3+," ECOC2005 Tu 4. 4. 5 (2005).

A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, "1.5 μm band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient γ of 675 W-1km-1," ECOC2004 Th3. 3. 6 (2004).

Nakamura, S.

Newbury, N. R.

Nicholson, J. W.

Nishida, Y.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, "Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature," Electron. Lett. 39, 609-611 (2003).
[CrossRef]

Nishijima, K.

Oikawa, K.

S. Aozasa, A. Mori, M. Kato, K. Oikawa, M. Yamada, K. Naganuma, and H. Ono, "Enhancement of Nonlinear Effect in Tellurite Photonic Crystal Fibre Realized by Amplification with Er3+," ECOC2005 Tu 4. 4. 5 (2005).

A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, "1.5 μm band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient γ of 675 W-1km-1," ECOC2004 Th3. 3. 6 (2004).

Okamoto, K.

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, "Low-Crosstalk 10-GHz-Spaced 512-Channel Arrayed-Waveguide Grating Multi/Demultiplexer Fabricated on a 4-in Wafer," IEEE Photon Technol. Lett. 13, 1182-1184 (2001).
[CrossRef]

Okubo, K.

Onae, A.

Ono, H.

S. Aozasa, A. Mori, M. Kato, K. Oikawa, M. Yamada, K. Naganuma, and H. Ono, "Enhancement of Nonlinear Effect in Tellurite Photonic Crystal Fibre Realized by Amplification with Er3+," ECOC2005 Tu 4. 4. 5 (2005).

Povazay, B.

Russel, P. St. J.

Russell, P. St. J.

Shibata, M.

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, "Low-Crosstalk 10-GHz-Spaced 512-Channel Arrayed-Waveguide Grating Multi/Demultiplexer Fabricated on a 4-in Wafer," IEEE Photon Technol. Lett. 13, 1182-1184 (2001).
[CrossRef]

Shikano, K.

A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, "1.5 μm band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient γ of 675 W-1km-1," ECOC2004 Th3. 3. 6 (2004).

Stalnaker, J. E.

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, "Coherent Optical Phase Transfer over a 32-km Fiber with 1 s Instability at 10-17," Phy. Rev. Lett. 99, 1536011-1536014 (2007).
[CrossRef]

Steinmeyer, G.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999).
[CrossRef]

Stenger, J.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999).
[CrossRef]

Sugiura, T.

Sutter, D. H.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999).
[CrossRef]

Suzuki, H.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, "Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature," Electron. Lett. 39, 609-611 (2003).
[CrossRef]

Swann, W. C.

Tadanaga, O.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, "Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature," Electron. Lett. 39, 609-611 (2003).
[CrossRef]

Takada, H.

Takada, K.

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, "Low-Crosstalk 10-GHz-Spaced 512-Channel Arrayed-Waveguide Grating Multi/Demultiplexer Fabricated on a 4-in Wafer," IEEE Photon Technol. Lett. 13, 1182-1184 (2001).
[CrossRef]

Takahashi, H.

Takamiya, H.

Telle, H. R.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999).
[CrossRef]

Thorpe, M. J.

Torizuka, K.

Tsuchida, H.

Unterhuber, A.

Wadsworth, W. J.

Wandt, D.

Washburn, B. R.

Yamada, M.

S. Aozasa, A. Mori, M. Kato, K. Oikawa, M. Yamada, K. Naganuma, and H. Ono, "Enhancement of Nonlinear Effect in Tellurite Photonic Crystal Fibre Realized by Amplification with Er3+," ECOC2005 Tu 4. 4. 5 (2005).

Yan, M. F.

Ye, J.

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, "Coherent Optical Phase Transfer over a 32-km Fiber with 1 s Instability at 10-17," Phy. Rev. Lett. 99, 1536011-1536014 (2007).
[CrossRef]

M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, "Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 μm," Opt. Lett. 32, 307-309 (2007).
[CrossRef] [PubMed]

Yoshida, M.

Appl. Phys. B (1)

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999).
[CrossRef]

Electron. Lett. (1)

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, "Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature," Electron. Lett. 39, 609-611 (2003).
[CrossRef]

IEEE Photon Technol. Lett. (1)

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, "Low-Crosstalk 10-GHz-Spaced 512-Channel Arrayed-Waveguide Grating Multi/Demultiplexer Fabricated on a 4-in Wafer," IEEE Photon Technol. Lett. 13, 1182-1184 (2001).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (4)

Opt. Lett. (6)

Phy. Rev. Lett. (1)

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, "Coherent Optical Phase Transfer over a 32-km Fiber with 1 s Instability at 10-17," Phy. Rev. Lett. 99, 1536011-1536014 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 2039011-2039014 (2001).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Other (3)

A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, "1.5 μm band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient γ of 675 W-1km-1," ECOC2004 Th3. 3. 6 (2004).

Highly nonlinear dispersion-shifted fiber fabricated by Sumitomo Electric Industries, Ltd. See http://www.sei.co.jp/tr_e/pdf/info/56-02.pdf.

S. Aozasa, A. Mori, M. Kato, K. Oikawa, M. Yamada, K. Naganuma, and H. Ono, "Enhancement of Nonlinear Effect in Tellurite Photonic Crystal Fibre Realized by Amplification with Er3+," ECOC2005 Tu 4. 4. 5 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) SEM images of the tellurite PCF. Arrows show the direction of the linear polarization of the input laser. (b) Chromatic dispersion curve of the tellurite PCF and tellurite glass material. The green line shows zero-dispersion. The zero-dispersion wavelength of tellurite glass material was 2290 nm. An arrow means that we shifted the zero-dispersion wavelength toward 1573 nm.

Fig. 2.
Fig. 2.

Experimental setup for the CEO locking with low pulse energy: fCEO , CEO frequency; frep , repetition rate; PBS, polarization beam splitter.

Fig. 3.
Fig. 3.

Spectrum generated in a (a) 0.7-, (b) 30-, and (c) 210-cm-long tellurite PCF, respectively by using of 30- (green), 80- (red), and 230-pJ (blue) fiber coupling pulse energy. The black dotted line in (a) shows the spectrum of a 100-fs fiber laser before the tellurite PCF. Each SC spectrum in the graph makes the intensity at 1560 nm the same value.

Fig. 4.
Fig. 4.

(a) The spectrum between the fundamental light in the 965-nm region (blue) and the frequency-doubled light (red) of 1930 nm when a 230-pJ pulse energy was launched into the tellurite PCF. (b) Self-referencing beat signal of the 250-MHz laser. Resolution bandwidth is 100 kHz. Inset: The phase difference between the beat signal and a local oscillator based on the GPS reference signal.

Fig. 5.
Fig. 5.

Power spectrum density of the CEO beat signal measured with a vector signal analyzer.

Metrics