Abstract

We present an analysis of non-bridging oxygen hole center (NBOHC) defects in Yb-doped silica fibers. Red photoluminescence is observed when several fiber samples are irradiated with green light (532nm). Both highly Ge-doped and moderately P-doped Yb fibers exhibit red-shifted NBOHC emission spectra while highly Al-doped Yb fibers seem to exhibit NBOHC spectra closer to that of pure silica. NBOHC centers may play a role in the photodarkening process of Yb doped fibers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Sigel and M. J. Marrone, "Photoluminescence in As-Drawn and Irradiated Silica Optical Fibers: An Assessment of the Role of Non-Bridging Oxygen Defect Centers," J. Non-Cryst. Solids 45, 1981, 235-247 (1981).
    [CrossRef]
  2. E. J. Friebele, D. L. Griscom, and M. J. Marrone, "The Optical Absorption and Luminescence Bands Near 2 eV in Irradiated and Drawn Synthetic Silica," J. Non-Cryst. Solids 71, 133-144 (1985).
    [CrossRef]
  3. R. Tohmon, Y. Shimogaichi, S. Munekuni, Y. Ohki, Y. Hama, and K Nagasawa, "Relation Between the 1.9 eV Luminescence and 4.8 eV Absorption Bands in High-Purity Silica Glass," Appl. Phys. Lett. 54, 1650-1652 (1989).
    [CrossRef]
  4. L. Skuja, "The Origin of the Intrinsic 1.9eV Luminescence Band in Glass SiO2," J. Non-Cryst. Solids 179, 51-69 (1994).
    [CrossRef]
  5. D. L. Griscom, "Visible/Infra-Red Absorption Study in Fiber Geometry of Metastable Defect States in High-Purity Fused Silicas," Mater. Sci. Forum 239-241, 19-24 (1997).
    [CrossRef]
  6. D. L. Griscom, "Determination of the Visible Range Optical Absorption Spectrum of Peroxy Radicals in Gamma-Irradiated Fused Silica," J. Non-Cryst. Solids 239, 66-77 (1998).
    [CrossRef]
  7. F. Goutaland, A. Boukenter, and Y. Ouerdane, "Defect Radial Repartitions in Ultraviolet Irradiated Germanosilicate Optical Fibers," J. Non-Cryst. Solids 245, 110-114 (1999).
    [CrossRef]
  8. T. Bakos, S. N. Rashkeev, and S. T. Pantelides, "Optically Active Defects in SiO2: The Nonbridging Oxygen Center and the Interstitial OH Molecule," Phys. Rev. B 70, 075203-1-9 (2004).
    [CrossRef]
  9. M. A. Stevens-Kalceff and J. Wong, "Distribution of Defects Induced in Fused Silica By Ultraviolet Laser Pulses Before and After Treatment With a CO2 Laser," J. Appl. Phys. 97, 113519-1-8 (2005).
    [CrossRef]
  10. D. L. Griscom, "Defect Structure of Glasses," J. Non-Cryst. Solids 73, 51-77 (1985).
    [CrossRef]
  11. M. A. Stevens-Kalceff, A. Stesmans, and J. Wong, "Defects Induced in Fused Silica By High Fluence Ultraviolet Laser Pulses at 355nm," Appl. Phys. Lett. 80, 758-760 (2002).
    [CrossRef]
  12. B. Crivelli, M. Martini, F. Meinardi, A. Paleari, and G. Spinolo, "Photoinduced Conversion of Optically Active Defects in Germanium-Doped Silica," Phys. Rev. B 54, 16637-16640 (1996).
    [CrossRef]
  13. E. M. Dianov, D. S. Starodubov, and A. A. Frolov, "UV Argon Laser Induced Luminescence Changes in Germanosilicate Fibre Preforms," Electron. Lett. 32, 246-247 (1996).
    [CrossRef]
  14. K. Arai, H. Imai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, "Evidence for Pair Generation of an E’ Center and a Nonbridging Oxygen-Hole Center in γ-ray-Irradiated Fluorine-Doped Low-OH Synthetic Silica Glasses," Phys. Rev. B 45, 10818-10821 (1992).
    [CrossRef]
  15. K. Yamamoto, K. Kojima, K. Handa, N. Wada, and K. Ozutsumi, "Local Structure Around Er3+ Ions in Sol-Gel Derived GeO2 Glasses Studied by Vibrational and XAFS Spectroscopy," J. Ceram. Soc. Jpn. 112, 245-251 (2004).
    [CrossRef]
  16. T. Kitabayashi, M. Ikeda, M. Makai, T. Sakai, K. Himeno, and K. Ohashi, "Population Inversion Factor Dependence of Photodarkening of Yb-Doped Fibers and its Suppression by Highly Aluminum Doping," Presented at OFC 2006, Paper OThC5.
    [PubMed]
  17. B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P. Martin, and J.-P. de Sandro, "Low Photodarkening Single Cladding Ytterbium Fibre Amplifier," Proc. SPIE 6453, 64530H-1-9 (2007).
    [CrossRef]
  18. Y. Hayashi, Y. Okuda, H. Mitera, and K. Kato, "Formation of Drawing- or Radiation-Induced Defects in Germanium-Doped Silica Core Optical Fiber," Jpn. J. Appl. Phys. 33, L233-L234 (1994).
    [CrossRef]
  19. A. N. Trukhin, J. L. Jansons, and K. Truhins, "Luminescence of Silica Glass Containing Aluminum Oxide," J. Non-Cryst. Solids 347, 80-86 (2004).
    [CrossRef]
  20. K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, "Aluminum or Phosphorus Co-Doping Effects on the Fluorescence and Structural Properties of Neodymium-Doped Silica Glass," J. Appl. Phys. 59, 3430-3436 (1986).
    [CrossRef]
  21. L. Skuja, "Optically Active Oxygen-Defficiency-Related Centers in Amorphous Silicon Dioxide," J. Non-Cryst. Solids 239, 16-48 (1998).
    [CrossRef]
  22. L. Skuja, "Direct Singlet-To-Triplet Optical Absorption and Luminescence Excitation Band of the Twofold-Coordinated Silicon Center in Oxygen-Deficient Glassy SiO2," J. Non-Cryst. Solids 167, 229-238 (1994).
    [CrossRef]
  23. B. Hitz, "Grating is written directly into Ytterbium-Doped Silica Fiber," Photonics Spectra 41, 90-91 (2007).
  24. A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, H. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, "Clustering of Rare Earth in Glasses, Aluminum Effect: Experiments and Modeling," J. Non-Cryst. Solids 348, 44-50 (2004).
    [CrossRef]
  25. Y. Qiao, N. Da, D. Chen, Q. Zhou, J. Qiu, and T. Akai, "Spectroscopic Properties of Neodymium Doped High Silica Glass and Aluminum Codoping Effects on the Enhancement of Fluorescence Emission," Appl. Phys. B 87, 717-722 (2007).
    [CrossRef]

2007 (2)

B. Hitz, "Grating is written directly into Ytterbium-Doped Silica Fiber," Photonics Spectra 41, 90-91 (2007).

Y. Qiao, N. Da, D. Chen, Q. Zhou, J. Qiu, and T. Akai, "Spectroscopic Properties of Neodymium Doped High Silica Glass and Aluminum Codoping Effects on the Enhancement of Fluorescence Emission," Appl. Phys. B 87, 717-722 (2007).
[CrossRef]

2004 (3)

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, H. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, "Clustering of Rare Earth in Glasses, Aluminum Effect: Experiments and Modeling," J. Non-Cryst. Solids 348, 44-50 (2004).
[CrossRef]

K. Yamamoto, K. Kojima, K. Handa, N. Wada, and K. Ozutsumi, "Local Structure Around Er3+ Ions in Sol-Gel Derived GeO2 Glasses Studied by Vibrational and XAFS Spectroscopy," J. Ceram. Soc. Jpn. 112, 245-251 (2004).
[CrossRef]

A. N. Trukhin, J. L. Jansons, and K. Truhins, "Luminescence of Silica Glass Containing Aluminum Oxide," J. Non-Cryst. Solids 347, 80-86 (2004).
[CrossRef]

2002 (1)

M. A. Stevens-Kalceff, A. Stesmans, and J. Wong, "Defects Induced in Fused Silica By High Fluence Ultraviolet Laser Pulses at 355nm," Appl. Phys. Lett. 80, 758-760 (2002).
[CrossRef]

1999 (1)

F. Goutaland, A. Boukenter, and Y. Ouerdane, "Defect Radial Repartitions in Ultraviolet Irradiated Germanosilicate Optical Fibers," J. Non-Cryst. Solids 245, 110-114 (1999).
[CrossRef]

1998 (2)

L. Skuja, "Optically Active Oxygen-Defficiency-Related Centers in Amorphous Silicon Dioxide," J. Non-Cryst. Solids 239, 16-48 (1998).
[CrossRef]

D. L. Griscom, "Determination of the Visible Range Optical Absorption Spectrum of Peroxy Radicals in Gamma-Irradiated Fused Silica," J. Non-Cryst. Solids 239, 66-77 (1998).
[CrossRef]

1997 (1)

D. L. Griscom, "Visible/Infra-Red Absorption Study in Fiber Geometry of Metastable Defect States in High-Purity Fused Silicas," Mater. Sci. Forum 239-241, 19-24 (1997).
[CrossRef]

1996 (2)

B. Crivelli, M. Martini, F. Meinardi, A. Paleari, and G. Spinolo, "Photoinduced Conversion of Optically Active Defects in Germanium-Doped Silica," Phys. Rev. B 54, 16637-16640 (1996).
[CrossRef]

E. M. Dianov, D. S. Starodubov, and A. A. Frolov, "UV Argon Laser Induced Luminescence Changes in Germanosilicate Fibre Preforms," Electron. Lett. 32, 246-247 (1996).
[CrossRef]

1994 (3)

L. Skuja, "The Origin of the Intrinsic 1.9eV Luminescence Band in Glass SiO2," J. Non-Cryst. Solids 179, 51-69 (1994).
[CrossRef]

L. Skuja, "Direct Singlet-To-Triplet Optical Absorption and Luminescence Excitation Band of the Twofold-Coordinated Silicon Center in Oxygen-Deficient Glassy SiO2," J. Non-Cryst. Solids 167, 229-238 (1994).
[CrossRef]

Y. Hayashi, Y. Okuda, H. Mitera, and K. Kato, "Formation of Drawing- or Radiation-Induced Defects in Germanium-Doped Silica Core Optical Fiber," Jpn. J. Appl. Phys. 33, L233-L234 (1994).
[CrossRef]

1992 (1)

K. Arai, H. Imai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, "Evidence for Pair Generation of an E’ Center and a Nonbridging Oxygen-Hole Center in γ-ray-Irradiated Fluorine-Doped Low-OH Synthetic Silica Glasses," Phys. Rev. B 45, 10818-10821 (1992).
[CrossRef]

1989 (1)

R. Tohmon, Y. Shimogaichi, S. Munekuni, Y. Ohki, Y. Hama, and K Nagasawa, "Relation Between the 1.9 eV Luminescence and 4.8 eV Absorption Bands in High-Purity Silica Glass," Appl. Phys. Lett. 54, 1650-1652 (1989).
[CrossRef]

1986 (1)

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, "Aluminum or Phosphorus Co-Doping Effects on the Fluorescence and Structural Properties of Neodymium-Doped Silica Glass," J. Appl. Phys. 59, 3430-3436 (1986).
[CrossRef]

1985 (2)

D. L. Griscom, "Defect Structure of Glasses," J. Non-Cryst. Solids 73, 51-77 (1985).
[CrossRef]

E. J. Friebele, D. L. Griscom, and M. J. Marrone, "The Optical Absorption and Luminescence Bands Near 2 eV in Irradiated and Drawn Synthetic Silica," J. Non-Cryst. Solids 71, 133-144 (1985).
[CrossRef]

Abe, Y.

K. Arai, H. Imai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, "Evidence for Pair Generation of an E’ Center and a Nonbridging Oxygen-Hole Center in γ-ray-Irradiated Fluorine-Doped Low-OH Synthetic Silica Glasses," Phys. Rev. B 45, 10818-10821 (1992).
[CrossRef]

Akai, T.

Y. Qiao, N. Da, D. Chen, Q. Zhou, J. Qiu, and T. Akai, "Spectroscopic Properties of Neodymium Doped High Silica Glass and Aluminum Codoping Effects on the Enhancement of Fluorescence Emission," Appl. Phys. B 87, 717-722 (2007).
[CrossRef]

Alombert-Goget, G.

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, H. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, "Clustering of Rare Earth in Glasses, Aluminum Effect: Experiments and Modeling," J. Non-Cryst. Solids 348, 44-50 (2004).
[CrossRef]

Arai, K.

K. Arai, H. Imai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, "Evidence for Pair Generation of an E’ Center and a Nonbridging Oxygen-Hole Center in γ-ray-Irradiated Fluorine-Doped Low-OH Synthetic Silica Glasses," Phys. Rev. B 45, 10818-10821 (1992).
[CrossRef]

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, "Aluminum or Phosphorus Co-Doping Effects on the Fluorescence and Structural Properties of Neodymium-Doped Silica Glass," J. Appl. Phys. 59, 3430-3436 (1986).
[CrossRef]

Boukenter, A.

F. Goutaland, A. Boukenter, and Y. Ouerdane, "Defect Radial Repartitions in Ultraviolet Irradiated Germanosilicate Optical Fibers," J. Non-Cryst. Solids 245, 110-114 (1999).
[CrossRef]

Chaussedent, S.

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, H. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, "Clustering of Rare Earth in Glasses, Aluminum Effect: Experiments and Modeling," J. Non-Cryst. Solids 348, 44-50 (2004).
[CrossRef]

Chen, D.

Y. Qiao, N. Da, D. Chen, Q. Zhou, J. Qiu, and T. Akai, "Spectroscopic Properties of Neodymium Doped High Silica Glass and Aluminum Codoping Effects on the Enhancement of Fluorescence Emission," Appl. Phys. B 87, 717-722 (2007).
[CrossRef]

Chiasera, A.

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, H. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, "Clustering of Rare Earth in Glasses, Aluminum Effect: Experiments and Modeling," J. Non-Cryst. Solids 348, 44-50 (2004).
[CrossRef]

Crivelli, B.

B. Crivelli, M. Martini, F. Meinardi, A. Paleari, and G. Spinolo, "Photoinduced Conversion of Optically Active Defects in Germanium-Doped Silica," Phys. Rev. B 54, 16637-16640 (1996).
[CrossRef]

Da, N.

Y. Qiao, N. Da, D. Chen, Q. Zhou, J. Qiu, and T. Akai, "Spectroscopic Properties of Neodymium Doped High Silica Glass and Aluminum Codoping Effects on the Enhancement of Fluorescence Emission," Appl. Phys. B 87, 717-722 (2007).
[CrossRef]

Dianov, E. M.

E. M. Dianov, D. S. Starodubov, and A. A. Frolov, "UV Argon Laser Induced Luminescence Changes in Germanosilicate Fibre Preforms," Electron. Lett. 32, 246-247 (1996).
[CrossRef]

Ferrari, M.

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, H. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, "Clustering of Rare Earth in Glasses, Aluminum Effect: Experiments and Modeling," J. Non-Cryst. Solids 348, 44-50 (2004).
[CrossRef]

Friebele, E. J.

E. J. Friebele, D. L. Griscom, and M. J. Marrone, "The Optical Absorption and Luminescence Bands Near 2 eV in Irradiated and Drawn Synthetic Silica," J. Non-Cryst. Solids 71, 133-144 (1985).
[CrossRef]

Frolov, A. A.

E. M. Dianov, D. S. Starodubov, and A. A. Frolov, "UV Argon Laser Induced Luminescence Changes in Germanosilicate Fibre Preforms," Electron. Lett. 32, 246-247 (1996).
[CrossRef]

Gaumer, N.

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, H. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, "Clustering of Rare Earth in Glasses, Aluminum Effect: Experiments and Modeling," J. Non-Cryst. Solids 348, 44-50 (2004).
[CrossRef]

Goutaland, F.

F. Goutaland, A. Boukenter, and Y. Ouerdane, "Defect Radial Repartitions in Ultraviolet Irradiated Germanosilicate Optical Fibers," J. Non-Cryst. Solids 245, 110-114 (1999).
[CrossRef]

Griscom, D. L.

D. L. Griscom, "Determination of the Visible Range Optical Absorption Spectrum of Peroxy Radicals in Gamma-Irradiated Fused Silica," J. Non-Cryst. Solids 239, 66-77 (1998).
[CrossRef]

D. L. Griscom, "Visible/Infra-Red Absorption Study in Fiber Geometry of Metastable Defect States in High-Purity Fused Silicas," Mater. Sci. Forum 239-241, 19-24 (1997).
[CrossRef]

E. J. Friebele, D. L. Griscom, and M. J. Marrone, "The Optical Absorption and Luminescence Bands Near 2 eV in Irradiated and Drawn Synthetic Silica," J. Non-Cryst. Solids 71, 133-144 (1985).
[CrossRef]

D. L. Griscom, "Defect Structure of Glasses," J. Non-Cryst. Solids 73, 51-77 (1985).
[CrossRef]

Hama, Y.

R. Tohmon, Y. Shimogaichi, S. Munekuni, Y. Ohki, Y. Hama, and K Nagasawa, "Relation Between the 1.9 eV Luminescence and 4.8 eV Absorption Bands in High-Purity Silica Glass," Appl. Phys. Lett. 54, 1650-1652 (1989).
[CrossRef]

Handa, K.

K. Yamamoto, K. Kojima, K. Handa, N. Wada, and K. Ozutsumi, "Local Structure Around Er3+ Ions in Sol-Gel Derived GeO2 Glasses Studied by Vibrational and XAFS Spectroscopy," J. Ceram. Soc. Jpn. 112, 245-251 (2004).
[CrossRef]

Handa, T.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, "Aluminum or Phosphorus Co-Doping Effects on the Fluorescence and Structural Properties of Neodymium-Doped Silica Glass," J. Appl. Phys. 59, 3430-3436 (1986).
[CrossRef]

Hayashi, Y.

Y. Hayashi, Y. Okuda, H. Mitera, and K. Kato, "Formation of Drawing- or Radiation-Induced Defects in Germanium-Doped Silica Core Optical Fiber," Jpn. J. Appl. Phys. 33, L233-L234 (1994).
[CrossRef]

Hitz, B.

B. Hitz, "Grating is written directly into Ytterbium-Doped Silica Fiber," Photonics Spectra 41, 90-91 (2007).

Honda, T.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, "Aluminum or Phosphorus Co-Doping Effects on the Fluorescence and Structural Properties of Neodymium-Doped Silica Glass," J. Appl. Phys. 59, 3430-3436 (1986).
[CrossRef]

Hosono, H.

K. Arai, H. Imai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, "Evidence for Pair Generation of an E’ Center and a Nonbridging Oxygen-Hole Center in γ-ray-Irradiated Fluorine-Doped Low-OH Synthetic Silica Glasses," Phys. Rev. B 45, 10818-10821 (1992).
[CrossRef]

Imagawa, H.

K. Arai, H. Imai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, "Evidence for Pair Generation of an E’ Center and a Nonbridging Oxygen-Hole Center in γ-ray-Irradiated Fluorine-Doped Low-OH Synthetic Silica Glasses," Phys. Rev. B 45, 10818-10821 (1992).
[CrossRef]

Imai, H.

K. Arai, H. Imai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, "Evidence for Pair Generation of an E’ Center and a Nonbridging Oxygen-Hole Center in γ-ray-Irradiated Fluorine-Doped Low-OH Synthetic Silica Glasses," Phys. Rev. B 45, 10818-10821 (1992).
[CrossRef]

Ishii, Y.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, "Aluminum or Phosphorus Co-Doping Effects on the Fluorescence and Structural Properties of Neodymium-Doped Silica Glass," J. Appl. Phys. 59, 3430-3436 (1986).
[CrossRef]

Isoya, J.

K. Arai, H. Imai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, "Evidence for Pair Generation of an E’ Center and a Nonbridging Oxygen-Hole Center in γ-ray-Irradiated Fluorine-Doped Low-OH Synthetic Silica Glasses," Phys. Rev. B 45, 10818-10821 (1992).
[CrossRef]

Jansons, J. L.

A. N. Trukhin, J. L. Jansons, and K. Truhins, "Luminescence of Silica Glass Containing Aluminum Oxide," J. Non-Cryst. Solids 347, 80-86 (2004).
[CrossRef]

Kato, K.

Y. Hayashi, Y. Okuda, H. Mitera, and K. Kato, "Formation of Drawing- or Radiation-Induced Defects in Germanium-Doped Silica Core Optical Fiber," Jpn. J. Appl. Phys. 33, L233-L234 (1994).
[CrossRef]

Kojima, K.

K. Yamamoto, K. Kojima, K. Handa, N. Wada, and K. Ozutsumi, "Local Structure Around Er3+ Ions in Sol-Gel Derived GeO2 Glasses Studied by Vibrational and XAFS Spectroscopy," J. Ceram. Soc. Jpn. 112, 245-251 (2004).
[CrossRef]

Kumata, K.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, "Aluminum or Phosphorus Co-Doping Effects on the Fluorescence and Structural Properties of Neodymium-Doped Silica Glass," J. Appl. Phys. 59, 3430-3436 (1986).
[CrossRef]

Marrone, M. J.

E. J. Friebele, D. L. Griscom, and M. J. Marrone, "The Optical Absorption and Luminescence Bands Near 2 eV in Irradiated and Drawn Synthetic Silica," J. Non-Cryst. Solids 71, 133-144 (1985).
[CrossRef]

Martini, M.

B. Crivelli, M. Martini, F. Meinardi, A. Paleari, and G. Spinolo, "Photoinduced Conversion of Optically Active Defects in Germanium-Doped Silica," Phys. Rev. B 54, 16637-16640 (1996).
[CrossRef]

Meinardi, F.

B. Crivelli, M. Martini, F. Meinardi, A. Paleari, and G. Spinolo, "Photoinduced Conversion of Optically Active Defects in Germanium-Doped Silica," Phys. Rev. B 54, 16637-16640 (1996).
[CrossRef]

Messaddeq, Y.

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, H. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, "Clustering of Rare Earth in Glasses, Aluminum Effect: Experiments and Modeling," J. Non-Cryst. Solids 348, 44-50 (2004).
[CrossRef]

Mitera, H.

Y. Hayashi, Y. Okuda, H. Mitera, and K. Kato, "Formation of Drawing- or Radiation-Induced Defects in Germanium-Doped Silica Core Optical Fiber," Jpn. J. Appl. Phys. 33, L233-L234 (1994).
[CrossRef]

Monteil, A.

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, H. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, "Clustering of Rare Earth in Glasses, Aluminum Effect: Experiments and Modeling," J. Non-Cryst. Solids 348, 44-50 (2004).
[CrossRef]

Munekuni, S.

R. Tohmon, Y. Shimogaichi, S. Munekuni, Y. Ohki, Y. Hama, and K Nagasawa, "Relation Between the 1.9 eV Luminescence and 4.8 eV Absorption Bands in High-Purity Silica Glass," Appl. Phys. Lett. 54, 1650-1652 (1989).
[CrossRef]

Nagasawa, K

R. Tohmon, Y. Shimogaichi, S. Munekuni, Y. Ohki, Y. Hama, and K Nagasawa, "Relation Between the 1.9 eV Luminescence and 4.8 eV Absorption Bands in High-Purity Silica Glass," Appl. Phys. Lett. 54, 1650-1652 (1989).
[CrossRef]

Namikawa, H.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, "Aluminum or Phosphorus Co-Doping Effects on the Fluorescence and Structural Properties of Neodymium-Doped Silica Glass," J. Appl. Phys. 59, 3430-3436 (1986).
[CrossRef]

Obriot, H.

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, H. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, "Clustering of Rare Earth in Glasses, Aluminum Effect: Experiments and Modeling," J. Non-Cryst. Solids 348, 44-50 (2004).
[CrossRef]

Ohki, Y.

R. Tohmon, Y. Shimogaichi, S. Munekuni, Y. Ohki, Y. Hama, and K Nagasawa, "Relation Between the 1.9 eV Luminescence and 4.8 eV Absorption Bands in High-Purity Silica Glass," Appl. Phys. Lett. 54, 1650-1652 (1989).
[CrossRef]

Okuda, Y.

Y. Hayashi, Y. Okuda, H. Mitera, and K. Kato, "Formation of Drawing- or Radiation-Induced Defects in Germanium-Doped Silica Core Optical Fiber," Jpn. J. Appl. Phys. 33, L233-L234 (1994).
[CrossRef]

Ouerdane, Y.

F. Goutaland, A. Boukenter, and Y. Ouerdane, "Defect Radial Repartitions in Ultraviolet Irradiated Germanosilicate Optical Fibers," J. Non-Cryst. Solids 245, 110-114 (1999).
[CrossRef]

Ozutsumi, K.

K. Yamamoto, K. Kojima, K. Handa, N. Wada, and K. Ozutsumi, "Local Structure Around Er3+ Ions in Sol-Gel Derived GeO2 Glasses Studied by Vibrational and XAFS Spectroscopy," J. Ceram. Soc. Jpn. 112, 245-251 (2004).
[CrossRef]

Paleari, A.

B. Crivelli, M. Martini, F. Meinardi, A. Paleari, and G. Spinolo, "Photoinduced Conversion of Optically Active Defects in Germanium-Doped Silica," Phys. Rev. B 54, 16637-16640 (1996).
[CrossRef]

Qiao, Y.

Y. Qiao, N. Da, D. Chen, Q. Zhou, J. Qiu, and T. Akai, "Spectroscopic Properties of Neodymium Doped High Silica Glass and Aluminum Codoping Effects on the Enhancement of Fluorescence Emission," Appl. Phys. B 87, 717-722 (2007).
[CrossRef]

Qiu, J.

Y. Qiao, N. Da, D. Chen, Q. Zhou, J. Qiu, and T. Akai, "Spectroscopic Properties of Neodymium Doped High Silica Glass and Aluminum Codoping Effects on the Enhancement of Fluorescence Emission," Appl. Phys. B 87, 717-722 (2007).
[CrossRef]

Ribeiro, S. J. L.

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, H. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, "Clustering of Rare Earth in Glasses, Aluminum Effect: Experiments and Modeling," J. Non-Cryst. Solids 348, 44-50 (2004).
[CrossRef]

Shimogaichi, Y.

R. Tohmon, Y. Shimogaichi, S. Munekuni, Y. Ohki, Y. Hama, and K Nagasawa, "Relation Between the 1.9 eV Luminescence and 4.8 eV Absorption Bands in High-Purity Silica Glass," Appl. Phys. Lett. 54, 1650-1652 (1989).
[CrossRef]

Skuja, L.

L. Skuja, "Optically Active Oxygen-Defficiency-Related Centers in Amorphous Silicon Dioxide," J. Non-Cryst. Solids 239, 16-48 (1998).
[CrossRef]

L. Skuja, "The Origin of the Intrinsic 1.9eV Luminescence Band in Glass SiO2," J. Non-Cryst. Solids 179, 51-69 (1994).
[CrossRef]

L. Skuja, "Direct Singlet-To-Triplet Optical Absorption and Luminescence Excitation Band of the Twofold-Coordinated Silicon Center in Oxygen-Deficient Glassy SiO2," J. Non-Cryst. Solids 167, 229-238 (1994).
[CrossRef]

Spinolo, G.

B. Crivelli, M. Martini, F. Meinardi, A. Paleari, and G. Spinolo, "Photoinduced Conversion of Optically Active Defects in Germanium-Doped Silica," Phys. Rev. B 54, 16637-16640 (1996).
[CrossRef]

Starodubov, D. S.

E. M. Dianov, D. S. Starodubov, and A. A. Frolov, "UV Argon Laser Induced Luminescence Changes in Germanosilicate Fibre Preforms," Electron. Lett. 32, 246-247 (1996).
[CrossRef]

Stesmans, A.

M. A. Stevens-Kalceff, A. Stesmans, and J. Wong, "Defects Induced in Fused Silica By High Fluence Ultraviolet Laser Pulses at 355nm," Appl. Phys. Lett. 80, 758-760 (2002).
[CrossRef]

Stevens-Kalceff, M. A.

M. A. Stevens-Kalceff, A. Stesmans, and J. Wong, "Defects Induced in Fused Silica By High Fluence Ultraviolet Laser Pulses at 355nm," Appl. Phys. Lett. 80, 758-760 (2002).
[CrossRef]

Tohmon, R.

R. Tohmon, Y. Shimogaichi, S. Munekuni, Y. Ohki, Y. Hama, and K Nagasawa, "Relation Between the 1.9 eV Luminescence and 4.8 eV Absorption Bands in High-Purity Silica Glass," Appl. Phys. Lett. 54, 1650-1652 (1989).
[CrossRef]

Truhins, K.

A. N. Trukhin, J. L. Jansons, and K. Truhins, "Luminescence of Silica Glass Containing Aluminum Oxide," J. Non-Cryst. Solids 347, 80-86 (2004).
[CrossRef]

Trukhin, A. N.

A. N. Trukhin, J. L. Jansons, and K. Truhins, "Luminescence of Silica Glass Containing Aluminum Oxide," J. Non-Cryst. Solids 347, 80-86 (2004).
[CrossRef]

Wada, N.

K. Yamamoto, K. Kojima, K. Handa, N. Wada, and K. Ozutsumi, "Local Structure Around Er3+ Ions in Sol-Gel Derived GeO2 Glasses Studied by Vibrational and XAFS Spectroscopy," J. Ceram. Soc. Jpn. 112, 245-251 (2004).
[CrossRef]

Wong, J.

M. A. Stevens-Kalceff, A. Stesmans, and J. Wong, "Defects Induced in Fused Silica By High Fluence Ultraviolet Laser Pulses at 355nm," Appl. Phys. Lett. 80, 758-760 (2002).
[CrossRef]

Yamamoto, K.

K. Yamamoto, K. Kojima, K. Handa, N. Wada, and K. Ozutsumi, "Local Structure Around Er3+ Ions in Sol-Gel Derived GeO2 Glasses Studied by Vibrational and XAFS Spectroscopy," J. Ceram. Soc. Jpn. 112, 245-251 (2004).
[CrossRef]

Zhou, Q.

Y. Qiao, N. Da, D. Chen, Q. Zhou, J. Qiu, and T. Akai, "Spectroscopic Properties of Neodymium Doped High Silica Glass and Aluminum Codoping Effects on the Enhancement of Fluorescence Emission," Appl. Phys. B 87, 717-722 (2007).
[CrossRef]

Appl. Phys. B (1)

Y. Qiao, N. Da, D. Chen, Q. Zhou, J. Qiu, and T. Akai, "Spectroscopic Properties of Neodymium Doped High Silica Glass and Aluminum Codoping Effects on the Enhancement of Fluorescence Emission," Appl. Phys. B 87, 717-722 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

R. Tohmon, Y. Shimogaichi, S. Munekuni, Y. Ohki, Y. Hama, and K Nagasawa, "Relation Between the 1.9 eV Luminescence and 4.8 eV Absorption Bands in High-Purity Silica Glass," Appl. Phys. Lett. 54, 1650-1652 (1989).
[CrossRef]

M. A. Stevens-Kalceff, A. Stesmans, and J. Wong, "Defects Induced in Fused Silica By High Fluence Ultraviolet Laser Pulses at 355nm," Appl. Phys. Lett. 80, 758-760 (2002).
[CrossRef]

Electron. Lett. (1)

E. M. Dianov, D. S. Starodubov, and A. A. Frolov, "UV Argon Laser Induced Luminescence Changes in Germanosilicate Fibre Preforms," Electron. Lett. 32, 246-247 (1996).
[CrossRef]

J. Appl. Phys. (1)

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, "Aluminum or Phosphorus Co-Doping Effects on the Fluorescence and Structural Properties of Neodymium-Doped Silica Glass," J. Appl. Phys. 59, 3430-3436 (1986).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

K. Yamamoto, K. Kojima, K. Handa, N. Wada, and K. Ozutsumi, "Local Structure Around Er3+ Ions in Sol-Gel Derived GeO2 Glasses Studied by Vibrational and XAFS Spectroscopy," J. Ceram. Soc. Jpn. 112, 245-251 (2004).
[CrossRef]

J. Non-Cryst. Solids (9)

D. L. Griscom, "Defect Structure of Glasses," J. Non-Cryst. Solids 73, 51-77 (1985).
[CrossRef]

L. Skuja, "The Origin of the Intrinsic 1.9eV Luminescence Band in Glass SiO2," J. Non-Cryst. Solids 179, 51-69 (1994).
[CrossRef]

E. J. Friebele, D. L. Griscom, and M. J. Marrone, "The Optical Absorption and Luminescence Bands Near 2 eV in Irradiated and Drawn Synthetic Silica," J. Non-Cryst. Solids 71, 133-144 (1985).
[CrossRef]

D. L. Griscom, "Determination of the Visible Range Optical Absorption Spectrum of Peroxy Radicals in Gamma-Irradiated Fused Silica," J. Non-Cryst. Solids 239, 66-77 (1998).
[CrossRef]

F. Goutaland, A. Boukenter, and Y. Ouerdane, "Defect Radial Repartitions in Ultraviolet Irradiated Germanosilicate Optical Fibers," J. Non-Cryst. Solids 245, 110-114 (1999).
[CrossRef]

L. Skuja, "Optically Active Oxygen-Defficiency-Related Centers in Amorphous Silicon Dioxide," J. Non-Cryst. Solids 239, 16-48 (1998).
[CrossRef]

L. Skuja, "Direct Singlet-To-Triplet Optical Absorption and Luminescence Excitation Band of the Twofold-Coordinated Silicon Center in Oxygen-Deficient Glassy SiO2," J. Non-Cryst. Solids 167, 229-238 (1994).
[CrossRef]

A. N. Trukhin, J. L. Jansons, and K. Truhins, "Luminescence of Silica Glass Containing Aluminum Oxide," J. Non-Cryst. Solids 347, 80-86 (2004).
[CrossRef]

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, H. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, "Clustering of Rare Earth in Glasses, Aluminum Effect: Experiments and Modeling," J. Non-Cryst. Solids 348, 44-50 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Hayashi, Y. Okuda, H. Mitera, and K. Kato, "Formation of Drawing- or Radiation-Induced Defects in Germanium-Doped Silica Core Optical Fiber," Jpn. J. Appl. Phys. 33, L233-L234 (1994).
[CrossRef]

Mater. Sci. Forum (1)

D. L. Griscom, "Visible/Infra-Red Absorption Study in Fiber Geometry of Metastable Defect States in High-Purity Fused Silicas," Mater. Sci. Forum 239-241, 19-24 (1997).
[CrossRef]

Photonics Spectra (1)

B. Hitz, "Grating is written directly into Ytterbium-Doped Silica Fiber," Photonics Spectra 41, 90-91 (2007).

Phys. Rev. B (2)

K. Arai, H. Imai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, "Evidence for Pair Generation of an E’ Center and a Nonbridging Oxygen-Hole Center in γ-ray-Irradiated Fluorine-Doped Low-OH Synthetic Silica Glasses," Phys. Rev. B 45, 10818-10821 (1992).
[CrossRef]

B. Crivelli, M. Martini, F. Meinardi, A. Paleari, and G. Spinolo, "Photoinduced Conversion of Optically Active Defects in Germanium-Doped Silica," Phys. Rev. B 54, 16637-16640 (1996).
[CrossRef]

Other (5)

T. Kitabayashi, M. Ikeda, M. Makai, T. Sakai, K. Himeno, and K. Ohashi, "Population Inversion Factor Dependence of Photodarkening of Yb-Doped Fibers and its Suppression by Highly Aluminum Doping," Presented at OFC 2006, Paper OThC5.
[PubMed]

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P. Martin, and J.-P. de Sandro, "Low Photodarkening Single Cladding Ytterbium Fibre Amplifier," Proc. SPIE 6453, 64530H-1-9 (2007).
[CrossRef]

G. H. Sigel and M. J. Marrone, "Photoluminescence in As-Drawn and Irradiated Silica Optical Fibers: An Assessment of the Role of Non-Bridging Oxygen Defect Centers," J. Non-Cryst. Solids 45, 1981, 235-247 (1981).
[CrossRef]

T. Bakos, S. N. Rashkeev, and S. T. Pantelides, "Optically Active Defects in SiO2: The Nonbridging Oxygen Center and the Interstitial OH Molecule," Phys. Rev. B 70, 075203-1-9 (2004).
[CrossRef]

M. A. Stevens-Kalceff and J. Wong, "Distribution of Defects Induced in Fused Silica By Ultraviolet Laser Pulses Before and After Treatment With a CO2 Laser," J. Appl. Phys. 97, 113519-1-8 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup for the excitation of NBOHC luminescence.

Fig. 2.
Fig. 2.

A color photograph taken of the Yb 103 fiber under 532nm illumination. The image is taken through a GRISM to show, visually, the presence of red luminescence. The other Ybdoped fibers exhibited similar luminescence.

Fig. 3.
Fig. 3.

PL data for several single clad fibers under 532nm excitation. Some pump is observed since the long-pass filter has a slow rising edge. The small peaks to the red of the pump (548nm, 555nm, and 565nm) are presently believed to be attributable to Raman scattering.

Fig. 4.
Fig. 4.

PL data for the P-co-doped single clad fibers under 532 nm excitation. Fiber 198 is also shown for comparison. The spectra for the P doped fibers are nearly indistinguishable, but do appear to have some structure.

Fig. 5.
Fig. 5.

PL data for the various Yb-doped double clad fibers under 532 nm excitation. The long pass filter probably affected the spectrum on the blue side of the NBOHC peak.

Fig. 6.
Fig. 6.

Photoluminescence spectra for two passive fibers. No NBOHC emission was observed for the Al/Ge fiber, but a very weak background red luminescence was recorded for the SMF-28™ fiber, with a peak near 700nm. The vertical scale is maintained for the inset.

Fig. 7.
Fig. 7.

Photoluminescence spectrum for an Nd and P co-doped silica fiber. An anomalous red luminescence spectrum is observed that is similar to those in the Yb fibers, but with a peak near 650nm. The Nd emission lines are also labeled. The inset shows the same spectrum on an expanded vertical axis, but with the same scale.

Fig. 8.
Fig. 8.

Simplified energy level diagram for upconversion paths involving NBOHC and ODC (II) defect centers. Energy transfer can occur from several excited Yb atoms to defect centers, initiating upconversion processes. Dashed arrows represent energy contributions in a cooperative process. Phonon relaxation is represented by squiggle lines.

Tables (1)

Tables Icon

Table 1. Chemical core compositions of the fibers evaluated. Peak R luminescence wavelength (λ) is also provided.Concentrations are in mol% of oxide. The core diameters, 2a, are also provided.

Metrics