Abstract

Resonance-splitting and enhanced notch depth are experimentally demonstrated in micro-ring resonators on SOI platform as a result of the mutual mode coupling. This coupling can be generated either by the nanometer-scaled gratings along the ring sidewalls or by evanescent directional coupling between two concentric rings. The transmission spectra are fitted using the time-domain coupled mode analysis. Split-wavelength separation of 0.68 nm for the 5-µm-radius ring, notch depth of 40 dB for the 10-µm-radius ring, and intrinsic Q factor of 2.6×105 for the 20-µm-radius ring are demonstrated. Notch depth improvement larger than 25dB has been reached in the 40-39-µm-radius double-ring structure. The enhanced notch depth and increased modal area for the concentric rings might be promising advantages for bio-sensing applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si/SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
    [CrossRef]
  2. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, "Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects," Opt. Express 15, 11934-11941 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-11934.
    [CrossRef] [PubMed]
  3. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, "Tunable silicon microring resonator with wide free spectral range," Appl. Phys. Lett. 89, 071110 (2006).
    [CrossRef]
  4. B. Timotijevic, F. Gardes, W. Headley, G. Reed, M. Paniccia, O. Cohen, D. Hak, and G. Masanovic, "Multi-stage racetrack resonator filters in silicon-on-insulator," J. Opt. A: Pure Appl. Opt. 8S473-S476 (2006).
    [CrossRef]
  5. Q. Xu, V. R. Almeida, and M. Lipson, "Micrometer-scale all-optical wavelength converter on silicon," Opt. Lett. 20, 2733 (2005).
    [CrossRef]
  6. F. Xia, L. Sekaric, and Yu. A. Vlasov, "Ultra-compact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
    [CrossRef]
  7. B. Lee, B. Small, K. Bergman, Q. Xu, and M. Lipson, "Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator," Opt. Lett. 31, 2701 (2006).
    [CrossRef] [PubMed]
  8. F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, "Optically Tunable Delay Line in Silicon Microring Resonator Based on Thermal Nonlinear Effect," to be published in IEEE J. Sel. Top. Quantum Electron. (2008).
  9. Z. Zhang, Q. Li, F. Liu, T. Ye, Y. Su, and M. Qiu, "Wavelength Conversion in a Silicon Mode-split Micro-ring Resonator with 1G Data Rate," accepted for oral presentation at the Conference on Lasers and Electro-Optics (CLEO, CTuT2) 2008.
  10. A. Ksendzov and Y. Lin, "Integrated optics ring-resonator sensors for protein detection," Opt. Lett. 30, 3344-3346 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-24-3344.
    [CrossRef]
  11. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing," Opt. Express 15, 7610-7615 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7610.
    [CrossRef] [PubMed]
  12. I. White, H. Oveys, X. Fan, T. Smith, and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006).
    [CrossRef]
  13. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, "High-Q ring resonators in thin silicon-on-insulator," Appl. Phys. Lett. 83, 797 (2003).
    [CrossRef]
  14. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861 (2004).
    [CrossRef]
  15. S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Compact silicon microring resonators with ultra-low propagation loss in the C band," Opt. Express 15, 14467 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-22-14467.
    [CrossRef] [PubMed]
  16. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328 (2004).
    [CrossRef]
  17. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998 (1997).
    [CrossRef]
  18. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of Modes Analysis of Resonant Channel Add-Drop Filters," IEEE J. Quantum Electron. 35, 1322 (1999).
    [CrossRef]
  19. S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, "Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides," Opt. Express 15, 9625 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-15-9625.
    [CrossRef] [PubMed]

2008 (1)

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, "Optically Tunable Delay Line in Silicon Microring Resonator Based on Thermal Nonlinear Effect," to be published in IEEE J. Sel. Top. Quantum Electron. (2008).

2007 (5)

2006 (4)

I. White, H. Oveys, X. Fan, T. Smith, and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, "Tunable silicon microring resonator with wide free spectral range," Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

B. Timotijevic, F. Gardes, W. Headley, G. Reed, M. Paniccia, O. Cohen, D. Hak, and G. Masanovic, "Multi-stage racetrack resonator filters in silicon-on-insulator," J. Opt. A: Pure Appl. Opt. 8S473-S476 (2006).
[CrossRef]

B. Lee, B. Small, K. Bergman, Q. Xu, and M. Lipson, "Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator," Opt. Lett. 31, 2701 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (2)

J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861 (2004).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328 (2004).
[CrossRef]

2003 (1)

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, "High-Q ring resonators in thin silicon-on-insulator," Appl. Phys. Lett. 83, 797 (2003).
[CrossRef]

1999 (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of Modes Analysis of Resonant Channel Add-Drop Filters," IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

1998 (1)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si/SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Almeida, V. R.

Q. Xu, V. R. Almeida, and M. Lipson, "Micrometer-scale all-optical wavelength converter on silicon," Opt. Lett. 20, 2733 (2005).
[CrossRef]

Armani, D. K.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, "High-Q ring resonators in thin silicon-on-insulator," Appl. Phys. Lett. 83, 797 (2003).
[CrossRef]

Baets, R.

Bartolozzi, I.

Beckx, S.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328 (2004).
[CrossRef]

Bergman, K.

Bienstman, P.

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing," Opt. Express 15, 7610-7615 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7610.
[CrossRef] [PubMed]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328 (2004).
[CrossRef]

Bogaerts, W.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328 (2004).
[CrossRef]

Bolivar, P. H.

Campenhout, J. V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328 (2004).
[CrossRef]

Chu, S. T.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si/SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Cohen, O.

B. Timotijevic, F. Gardes, W. Headley, G. Reed, M. Paniccia, O. Cohen, D. Hak, and G. Masanovic, "Multi-stage racetrack resonator filters in silicon-on-insulator," J. Opt. A: Pure Appl. Opt. 8S473-S476 (2006).
[CrossRef]

De Vos, K.

Dumon, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328 (2004).
[CrossRef]

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of Modes Analysis of Resonant Channel Add-Drop Filters," IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Fan, X.

I. White, H. Oveys, X. Fan, T. Smith, and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si/SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

Gardes, F.

B. Timotijevic, F. Gardes, W. Headley, G. Reed, M. Paniccia, O. Cohen, D. Hak, and G. Masanovic, "Multi-stage racetrack resonator filters in silicon-on-insulator," J. Opt. A: Pure Appl. Opt. 8S473-S476 (2006).
[CrossRef]

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si/SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

Hak, D.

B. Timotijevic, F. Gardes, W. Headley, G. Reed, M. Paniccia, O. Cohen, D. Hak, and G. Masanovic, "Multi-stage racetrack resonator filters in silicon-on-insulator," J. Opt. A: Pure Appl. Opt. 8S473-S476 (2006).
[CrossRef]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of Modes Analysis of Resonant Channel Add-Drop Filters," IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si/SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Headley, W.

B. Timotijevic, F. Gardes, W. Headley, G. Reed, M. Paniccia, O. Cohen, D. Hak, and G. Masanovic, "Multi-stage racetrack resonator filters in silicon-on-insulator," J. Opt. A: Pure Appl. Opt. 8S473-S476 (2006).
[CrossRef]

Henschel, W.

Ippen, E. P.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si/SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of Modes Analysis of Resonant Channel Add-Drop Filters," IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Khan, M. H.

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of Modes Analysis of Resonant Channel Add-Drop Filters," IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Kimerling, L. C.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si/SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, "High-Q ring resonators in thin silicon-on-insulator," Appl. Phys. Lett. 83, 797 (2003).
[CrossRef]

Ksendzov, A.

Kurz, H.

Laine, J. P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Lee, B.

Li, Q.

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, "Optically Tunable Delay Line in Silicon Microring Resonator Based on Thermal Nonlinear Effect," to be published in IEEE J. Sel. Top. Quantum Electron. (2008).

Lin, Y.

Lipson, M.

Little, B. E.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si/SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Liu, F.

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, "Optically Tunable Delay Line in Silicon Microring Resonator Based on Thermal Nonlinear Effect," to be published in IEEE J. Sel. Top. Quantum Electron. (2008).

Liu, T.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, "Tunable silicon microring resonator with wide free spectral range," Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

Luyssaert, B.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328 (2004).
[CrossRef]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of Modes Analysis of Resonant Channel Add-Drop Filters," IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Masanovic, G.

B. Timotijevic, F. Gardes, W. Headley, G. Reed, M. Paniccia, O. Cohen, D. Hak, and G. Masanovic, "Multi-stage racetrack resonator filters in silicon-on-insulator," J. Opt. A: Pure Appl. Opt. 8S473-S476 (2006).
[CrossRef]

Nawrocka, M. S.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, "Tunable silicon microring resonator with wide free spectral range," Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

Niehusmann, J.

Oveys, H.

I. White, H. Oveys, X. Fan, T. Smith, and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Panepucci, R. R.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, "Tunable silicon microring resonator with wide free spectral range," Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

Paniccia, M.

B. Timotijevic, F. Gardes, W. Headley, G. Reed, M. Paniccia, O. Cohen, D. Hak, and G. Masanovic, "Multi-stage racetrack resonator filters in silicon-on-insulator," J. Opt. A: Pure Appl. Opt. 8S473-S476 (2006).
[CrossRef]

Qi, M.

Qiu, M.

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, "Optically Tunable Delay Line in Silicon Microring Resonator Based on Thermal Nonlinear Effect," to be published in IEEE J. Sel. Top. Quantum Electron. (2008).

Reed, G.

B. Timotijevic, F. Gardes, W. Headley, G. Reed, M. Paniccia, O. Cohen, D. Hak, and G. Masanovic, "Multi-stage racetrack resonator filters in silicon-on-insulator," J. Opt. A: Pure Appl. Opt. 8S473-S476 (2006).
[CrossRef]

Rooks, M.

Schacht, E.

Scheerlinck, S.

Schrauwen, J.

Sekaric, L.

Shen, H.

Small, B.

Smith, T.

I. White, H. Oveys, X. Fan, T. Smith, and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, "High-Q ring resonators in thin silicon-on-insulator," Appl. Phys. Lett. 83, 797 (2003).
[CrossRef]

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si/SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

Su, Y.

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, "Optically Tunable Delay Line in Silicon Microring Resonator Based on Thermal Nonlinear Effect," to be published in IEEE J. Sel. Top. Quantum Electron. (2008).

Taillaert, D.

S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, "Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides," Opt. Express 15, 9625 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-15-9625.
[CrossRef] [PubMed]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328 (2004).
[CrossRef]

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si/SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

Thourhout, D. V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328 (2004).
[CrossRef]

Timotijevic, B.

B. Timotijevic, F. Gardes, W. Headley, G. Reed, M. Paniccia, O. Cohen, D. Hak, and G. Masanovic, "Multi-stage racetrack resonator filters in silicon-on-insulator," J. Opt. A: Pure Appl. Opt. 8S473-S476 (2006).
[CrossRef]

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, "High-Q ring resonators in thin silicon-on-insulator," Appl. Phys. Lett. 83, 797 (2003).
[CrossRef]

Van Laere, F.

Van Thourhout, D.

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of Modes Analysis of Resonant Channel Add-Drop Filters," IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Vlasov, Y.

Vlasov, Yu. A.

F. Xia, L. Sekaric, and Yu. A. Vlasov, "Ultra-compact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
[CrossRef]

Vörckel, A.

Wahlbrink, T.

Wang, X.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, "Tunable silicon microring resonator with wide free spectral range," Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

White, I.

I. White, H. Oveys, X. Fan, T. Smith, and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Wiaux, V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328 (2004).
[CrossRef]

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328 (2004).
[CrossRef]

Xia, F.

Xiao, S.

Xu, Q.

Zhang, J.

I. White, H. Oveys, X. Fan, T. Smith, and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Zhang, Z.

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, "Optically Tunable Delay Line in Silicon Microring Resonator Based on Thermal Nonlinear Effect," to be published in IEEE J. Sel. Top. Quantum Electron. (2008).

Appl. Phys. Lett. (3)

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, "Tunable silicon microring resonator with wide free spectral range," Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

I. White, H. Oveys, X. Fan, T. Smith, and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, "High-Q ring resonators in thin silicon-on-insulator," Appl. Phys. Lett. 83, 797 (2003).
[CrossRef]

IEEE J. Lightwave Technol. (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of Modes Analysis of Resonant Channel Add-Drop Filters," IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, "Optically Tunable Delay Line in Silicon Microring Resonator Based on Thermal Nonlinear Effect," to be published in IEEE J. Sel. Top. Quantum Electron. (2008).

IEEE Photon. Technol. Lett. (2)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si/SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328 (2004).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

B. Timotijevic, F. Gardes, W. Headley, G. Reed, M. Paniccia, O. Cohen, D. Hak, and G. Masanovic, "Multi-stage racetrack resonator filters in silicon-on-insulator," J. Opt. A: Pure Appl. Opt. 8S473-S476 (2006).
[CrossRef]

Nature Photon. (1)

F. Xia, L. Sekaric, and Yu. A. Vlasov, "Ultra-compact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Other (1)

Z. Zhang, Q. Li, F. Liu, T. Ye, Y. Su, and M. Qiu, "Wavelength Conversion in a Silicon Mode-split Micro-ring Resonator with 1G Data Rate," accepted for oral presentation at the Conference on Lasers and Electro-Optics (CLEO, CTuT2) 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of a ring resonator side coupled to a waveguide. Wave propagating from left to right (S +1 ) in the waveguide only generates the counter-clockwise travelling mode a(t) in the ring. Clockwise travelling mode b(t) are coupled with a(t) by coefficient u due to the grating along the ring. The grating is indicated as the red dashed circle.

Fig. 2.
Fig. 2.

Illustration of the dependence of transmission spectra on the mutual coupling coefficient u. With the presence of mutual coupling, the notch becomes deeper. At optimal coupling um, complete channel drop can be reached. When u further increases, mode splitting occurs.

Fig. 3.
Fig. 3.

The SEM photo of (a) the grating on the side-walls of a 20-µm-radius ring resonator and (b) gold grating couplers at the tapered waveguide end to assist vertical light injection/detection with a single mode fiber.

Fig. 4.
Fig. 4.

(a) SEM photo of a 5-µm-radius ring. (b) broad spectrum transmission. (c) Curve fitting using Eq. (6) for one of the notch groups. The intrinsic Q value obtained is 6×104 and the coupling Q is 2×104. The split notches are deeper than the case without mutual coupling (12dB compared to 6dB).

Fig. 5.
Fig. 5.

(a) SEM photo of a 10-µm-radius ring. (b) broad spectrum transmission. (c) Curve fitting using Eq. (6) for one of the notch groups. The notch depth is much improved, 40dB compared to the case without mutual coupling, where the notch is barely visible.

Fig. 6.
Fig. 6.

(a) SEM photo of a 20-µm-radius ring. (b) broad spectrum transmission. (c) Curve fitting using Eq. (6) for one of the notch groups. The intrinsic Q value obtained is 2.6×105 and the coupling Q is 1.9×104.

Fig. 7.
Fig. 7.

Schematic of two concentric ring resonators side coupled to a waveguide. Wave propagating from left to right (S +1 ) in the waveguide only generates the counter-clockwise travelling mode a(t) in the outer ring. Counter-clockwise travelling mode b(t) in the inner ring can then be generated by evanescent directional coupling from a(t) .

Fig. 8.
Fig. 8.

(a) SEM photo of a single 40-µm-radius ring. (b) SEM photo of a dual 40-39-µm-radius ring structure. (c) broad spectrum transmission for both cases. The double ring structure exhibits much enhanced notch depth. (d)-(e) Curve fitting for two of the deep notches using Eq. (6).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

da dt = ( j ω a 1 τ a ) a j κ a S + 1 jub
db dt = ( j ω b 1 τ b ) b j κ b S + 2 jua
S 2 = e j β L ( S + 1 j κ a * a )
S 1 = e j β L ( S + 2 j κ b * b )
S 2 2 = S + 1 2 1 κ a 2 B AB + u 2 2
T ( ω ) = S 2 2 S + 1 2 = D C 2
T = 1 κ a 2 A 2 = 4 ( ω ω a ) 2 + ( 1 Q ae 1 Q ai ) 2 4 ( ω ω a ) 2 + ( 1 Q ae + 1 Q ai ) 2
Im { D } = 0 ω = ω a = ω b .
Re { D } = 0 u 2 = u m 2 = ω a ω b 4 Q b ( 1 Q ae 1 Q ai ) .
da dt = ( j ω a 1 τ a ) a j κ a S + 1 jub
db dt = ( j ω b 1 τ b ) b jua
S 2 = e j β L ( S + 1 j κ a * a )
S 1 = e j β L S + 2
T ( ω ) = S 2 2 S + 1 2 = D C 2

Metrics