Abstract

We propose an ultrahigh quality factor (Q) photonic crystal slab cavity created by the local modulation of the air hole radius in the waveguide. In the cavity, photons are confined between two mirror regions with larger air holes and the lifetime of photons is greatly enhanced by introducing tapered regions with linearly increasing air hole radii. Q and mode volume are investigated for the cavities with various lengths and air hole size offsets of the tapered region with linearly increasing air hole radii by three-dimensional finite-difference time-domain method. The behaviors are analyzed by the mode patterns in real space and wavevector space. We obtain a numerical Q up to 8.8×107 for a mode volume of 1.6 (λ/n)3. Concerning the waveguide coupling, the cavity shows 80% coupling efficiency while keeping Q higher than 106.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric supuerlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-2821 (1999).
    [CrossRef] [PubMed]
  4. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
    [CrossRef] [PubMed]
  5. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
    [CrossRef] [PubMed]
  6. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
    [CrossRef]
  7. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature Photon. 1, 449-458 (2007).
    [CrossRef]
  8. Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206-17213 (2007).
    [CrossRef] [PubMed]
  9. R. Herrmann, T. Sünner, T. Hein, A. Löffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs, " Opt. Lett. 31, 1299-1301 (2006).
    [CrossRef]
  10. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 1-3 (2006).
    [CrossRef]
  11. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).
    [CrossRef]
  12. S. T. Hanic, M. J. Steel, C. M. Sterke, and D. J. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett. 32, 542-544 (2007).
    [CrossRef]
  13. S. T. Hanic, C. M. Sterke, and M. J. Steel, "Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration," Opt. Express 14, 12451-12456 (2006).
    [CrossRef]
  14. C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. T. Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. L. Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 1-3 (2007).
    [CrossRef]
  15. S. H. Kwon, S. H. Kim, S. K. Kim, Y. H. Lee, and S. B. Kim, "Small, low-loss heterogeneous photonic bandedge laser," Opt. Express 12, 5356-5361 (2004).
    [CrossRef] [PubMed]
  16. S. H. Kim, S. Kim, and Y. H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonantors," Phys. Rev. B 73, 1-13 (2006).
    [CrossRef]
  17. H. Y. Ryu, M. Notomi, and Y. H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
    [CrossRef]
  18. H. Y. Ryu, M. Notomi, G. H. Kim, and Y. H. Lee, "High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity," Opt. Express 12, 1708-1719 (2004).
    [CrossRef] [PubMed]

2007 (5)

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature Photon. 1, 449-458 (2007).
[CrossRef]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. T. Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. L. Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 1-3 (2007).
[CrossRef]

S. T. Hanic, M. J. Steel, C. M. Sterke, and D. J. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett. 32, 542-544 (2007).
[CrossRef]

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206-17213 (2007).
[CrossRef] [PubMed]

2006 (4)

S. H. Kim, S. Kim, and Y. H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonantors," Phys. Rev. B 73, 1-13 (2006).
[CrossRef]

S. T. Hanic, C. M. Sterke, and M. J. Steel, "Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration," Opt. Express 14, 12451-12456 (2006).
[CrossRef]

R. Herrmann, T. Sünner, T. Hein, A. Löffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs, " Opt. Lett. 31, 1299-1301 (2006).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 1-3 (2006).
[CrossRef]

2005 (2)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (2)

H. Y. Ryu, M. Notomi, and Y. H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-2821 (1999).
[CrossRef] [PubMed]

1987 (2)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric supuerlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Asano, T.

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206-17213 (2007).
[CrossRef] [PubMed]

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature Photon. 1, 449-458 (2007).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-2821 (1999).
[CrossRef] [PubMed]

Davies, B. L.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. T. Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. L. Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 1-3 (2007).
[CrossRef]

Eggleton, B. J.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. T. Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. L. Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 1-3 (2007).
[CrossRef]

Forchel, A.

R. Herrmann, T. Sünner, T. Hein, A. Löffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs, " Opt. Lett. 31, 1299-1301 (2006).
[CrossRef]

Freeman, D.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. T. Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. L. Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 1-3 (2007).
[CrossRef]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature Photon. 1, 449-458 (2007).
[CrossRef]

Giessen, H.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. T. Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. L. Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 1-3 (2007).
[CrossRef]

Grillet, C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. T. Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. L. Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 1-3 (2007).
[CrossRef]

Hagino, H.

Hanic, S. T.

S. T. Hanic, M. J. Steel, C. M. Sterke, and D. J. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett. 32, 542-544 (2007).
[CrossRef]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. T. Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. L. Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 1-3 (2007).
[CrossRef]

S. T. Hanic, C. M. Sterke, and M. J. Steel, "Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration," Opt. Express 14, 12451-12456 (2006).
[CrossRef]

Hein, T.

R. Herrmann, T. Sünner, T. Hein, A. Löffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs, " Opt. Lett. 31, 1299-1301 (2006).
[CrossRef]

Herrmann, R.

R. Herrmann, T. Sünner, T. Hein, A. Löffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs, " Opt. Lett. 31, 1299-1301 (2006).
[CrossRef]

John, S.

S. John, "Strong localization of photons in certain disordered dielectric supuerlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Kamp, M.

R. Herrmann, T. Sünner, T. Hein, A. Löffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs, " Opt. Lett. 31, 1299-1301 (2006).
[CrossRef]

Kim, G. H.

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-2821 (1999).
[CrossRef] [PubMed]

Kim, S.

S. H. Kim, S. Kim, and Y. H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonantors," Phys. Rev. B 73, 1-13 (2006).
[CrossRef]

Kim, S. B.

Kim, S. H.

S. H. Kim, S. Kim, and Y. H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonantors," Phys. Rev. B 73, 1-13 (2006).
[CrossRef]

S. H. Kwon, S. H. Kim, S. K. Kim, Y. H. Lee, and S. B. Kim, "Small, low-loss heterogeneous photonic bandedge laser," Opt. Express 12, 5356-5361 (2004).
[CrossRef] [PubMed]

Kim, S. K.

Kuramochi, E.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 1-3 (2006).
[CrossRef]

Kwon, S. H.

Lee, M. W.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. T. Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. L. Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 1-3 (2007).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-2821 (1999).
[CrossRef] [PubMed]

Lee, Y. H.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. T. Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. L. Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 1-3 (2007).
[CrossRef]

S. H. Kim, S. Kim, and Y. H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonantors," Phys. Rev. B 73, 1-13 (2006).
[CrossRef]

S. H. Kwon, S. H. Kim, S. K. Kim, Y. H. Lee, and S. B. Kim, "Small, low-loss heterogeneous photonic bandedge laser," Opt. Express 12, 5356-5361 (2004).
[CrossRef] [PubMed]

H. Y. Ryu, M. Notomi, G. H. Kim, and Y. H. Lee, "High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity," Opt. Express 12, 1708-1719 (2004).
[CrossRef] [PubMed]

H. Y. Ryu, M. Notomi, and Y. H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

Löffler, A.

R. Herrmann, T. Sünner, T. Hein, A. Löffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs, " Opt. Lett. 31, 1299-1301 (2006).
[CrossRef]

Madden, S.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. T. Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. L. Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 1-3 (2007).
[CrossRef]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 1-3 (2006).
[CrossRef]

Monat, C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. T. Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. L. Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 1-3 (2007).
[CrossRef]

Moss, D. J.

Noda, S.

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206-17213 (2007).
[CrossRef] [PubMed]

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature Photon. 1, 449-458 (2007).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Notomi, M.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 1-3 (2006).
[CrossRef]

H. Y. Ryu, M. Notomi, G. H. Kim, and Y. H. Lee, "High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity," Opt. Express 12, 1708-1719 (2004).
[CrossRef] [PubMed]

H. Y. Ryu, M. Notomi, and Y. H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-2821 (1999).
[CrossRef] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-2821 (1999).
[CrossRef] [PubMed]

Ruan, Y.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. T. Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. L. Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 1-3 (2007).
[CrossRef]

Ryu, H. Y.

H. Y. Ryu, M. Notomi, G. H. Kim, and Y. H. Lee, "High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity," Opt. Express 12, 1708-1719 (2004).
[CrossRef] [PubMed]

H. Y. Ryu, M. Notomi, and Y. H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-2821 (1999).
[CrossRef] [PubMed]

Shinya, A.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 1-3 (2006).
[CrossRef]

Smith, C. L. C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. T. Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. L. Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 1-3 (2007).
[CrossRef]

Song, B. S.

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206-17213 (2007).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Steel, M. J.

Sterke, C. M.

Sünner, T.

R. Herrmann, T. Sünner, T. Hein, A. Löffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs, " Opt. Lett. 31, 1299-1301 (2006).
[CrossRef]

Takahashi, Y.

Tanabe, T.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 1-3 (2006).
[CrossRef]

Tanaka, Y.

Taniyama, H.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).
[CrossRef]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 1-3 (2006).
[CrossRef]

Wu, D. K. C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. T. Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. L. Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 1-3 (2007).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-2821 (1999).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 1-3 (2006).
[CrossRef]

H. Y. Ryu, M. Notomi, and Y. H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. T. Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. L. Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 1-3 (2007).
[CrossRef]

Nature (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Nature Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Nature Photon. (2)

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature Photon. 1, 449-458 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

S. T. Hanic, M. J. Steel, C. M. Sterke, and D. J. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett. 32, 542-544 (2007).
[CrossRef]

R. Herrmann, T. Sünner, T. Hein, A. Löffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs, " Opt. Lett. 31, 1299-1301 (2006).
[CrossRef]

Phys. Rev. B (1)

S. H. Kim, S. Kim, and Y. H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonantors," Phys. Rev. B 73, 1-13 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric supuerlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-2821 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Proposed photonic crystal cavities. Dotted purple lines indicate the center of the cavities. (a) S5 cavity. (b) S3 cavity. For both cavities, the mirror regions are represented by yellow boxes, the tapered regions by red boxes. S5 and S3 cavities have 4 and 2 tapered layers. (c) Air hole radius along the waveguide. The air hole radius of the photonic crystal and the middle of the waveguides is rpc=0.25a and the radius in the mirror regions is rwg. The lattice constant is denoted by a.

Fig. 2.
Fig. 2.

(a) The band structure for a line defect waveguide with rwg~0.25a and 0.28a. The gray area and the yellow box indicate leaky mode and mode-gap regions. The simulated structures with rwg~0.25a and 0.28a are shown in (b) and (c), respectively, indicated by the yellow colored circles. (d) Magnetic field pattern at the bandedge, wavevector~0.5(2π/a), of the waveguide with rwg~0.25a. Field is orthogonal to the slab surface.

Fig. 3.
Fig. 3.

Field patterns and far-field patterns of the S5 cavity with rwg~0.27a. (a) Electric field intensity profile. The black circles indicate air holes. (b) Vertical magnetic field (Hz). (c) Far-field pattern. The mapping (x, y) is (sinθcosϕ, sinθsinϕ). θ is the angle from the vertical direction to slab surface so that the center indicates vertical emission direction. Black solid line circle represents horizontal emission direction. Black dotted circle shows 30° emission angle. (d) Ex field. (e) Ey field. (f) Polarization of the collected electric fields within NA=0.6 in the simulated far-field.

Fig. 4.
Fig. 4.

Mode patterns of (a) S1 cavity and (b) S5 cavity in the wavevector space (Log scale). |FT(Ex)|2+|FT(Ey)|2 is plotted. The yellow circle indicates the light cone. (c) Mode distributions of S1, S2, S3, S5 cavities along kx direction in the wavevector space (Log scale). The yellow box corresponds to the light cone. The rwg of each cavity is as given in table.1. (d) Qv of the cavities as a function of the length of the tapered region.

Fig. 5.
Fig. 5.

Mode characteristics of the S3 cavities with various rwg. (a) Total Q and mode volume. (b) Q factors for each loss channel. (c) The normalized frequencies (a/λ) of the cavity mode (black line) and the bandedge mode (red line) of mirror waveguide as a function of rwg. (d) Total Q and mode volume of the S5 cavities with various rwg.

Fig. 6.
Fig. 6.

Electric field intensity patterns (linear scale) of S3 cavities (a) with rwg~0.27a and (b) rwg~0.36a. Wavevector distributions (Log scale) of S3 cavities (c) with rwg~0.27a (d) rwg~0.36a. (e) Mode distributions along kx direction in the wavevector space (Log scale). The yellow box corresponds to the light cone.

Fig. 7.
Fig. 7.

(a) Qs for each loss channel of the S3 cavity with rwg~0.28a vs. number of mirror layers. (b) Total Q and extraction efficiency, η, vs. number of mirror layers.

Tables (1)

Tables Icon

Table 1. Vertical Q factors (Qv) and mode volumes (Vm) of S5, S3, S2, S1 cavities

Metrics