Abstract

We use finite-difference time-domain (FDTD) simulations to demonstrate enhanced infrared absorption in a photodetector covered with a microstructured metal film consisting of a metal-plasmon grating collector/concentrator and sub-wavelength detector well; for circular gratings we use radial FDTD, and for linear gratings we use two-dimensional FDTD. We identify a figure of merit to quantify the improvement in signal-to-noise ratio of such a detector scheme.We optimize grating parameters for a circular grating surrounding a simple hole, showing that the signal-to-noise ratio can be improved by a factor of as much as 5.2, whereas the signal-to-noise improvement for comparable linear gratings is at most 1.7. In the case of the circular grating, this result is achieved with more than 400 times as much light absorbed in the hole as with a metal film but no grating.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
    [CrossRef]
  2. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
    [CrossRef]
  3. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef] [PubMed]
  4. A. Nahata, R. A. Linke, T. Ishi, K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28, 423–425 (2003).
    [CrossRef] [PubMed]
  5. S. Shinada, J. Hashizume, F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83, 836–838 (2003).
    [CrossRef]
  6. F. I. Baida, D. Van Labeke, B. Guizal, “Enhanced confined light transmission by single subwavelength apertures in metallic films,” Appl. Opt. 42, 6811–6815 (2003).
    [CrossRef] [PubMed]
  7. A. Degiron, T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12, 3694–3700 (2004).
    [CrossRef] [PubMed]
  8. H. J. Lezec, T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
    [CrossRef] [PubMed]
  9. T. Ishi, J. Fujikata, K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys. 44, L170–L172 (2005).
    [CrossRef]
  10. E. Popov, M. Nevière, A.-L. Fehrembach, N. Bonod, “Optimization of plasmon excitation at structured apertures,” Appl. Opt. 44, 6141–6154 (2005).
    [CrossRef] [PubMed]
  11. E. Popov, M. Nevière, A.-L. Fehrembach, N. Bonod, “Enhanced transmission of light through a circularly structured aperture,” Appl. Opt. 44, 6898–6904 (2005).
    [CrossRef] [PubMed]
  12. C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, J. M. Liu, “Similarities and differences for light-induced surface plasmons in one- and two-dimensional symmetrical metallic nanostructures,” Opt. Lett. 31, 2341–2343 (2006).
    [CrossRef] [PubMed]
  13. K. L. Shuford, M. A. Ratner, S. K. Gray, G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B: Lasers Opt. 84, 11–18 (2006).
    [CrossRef]
  14. J. Olkkonen, K. Kataja, D. G. Howe, “Light transmission through a high index dielectric hole in a metal film surrounded by surface corrugations,” Opt. Express 14, 11506–11511 (2006).
    [CrossRef] [PubMed]
  15. C.-K. Chang, D.-Z. Lin, C.-S. Yeh, C.-K. Lee, Y.-C. Chang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90, 061113 (2007).
    [CrossRef]
  16. H. Cao, A. Agrawa, A. Nahata, “Controlling the transmission resonance lineshape of a single subwavelength aperture,” Opt. Express 13, 763–769 (2005).
    [CrossRef] [PubMed]
  17. A. Agrawal, H. Cao, A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,” Opt. Express 13, 3535–3542 (2005).
    [CrossRef] [PubMed]
  18. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040–2042 (2004).
    [CrossRef]
  19. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,” J. Opt. A: Pure Appl. Opt. 7, S152–S158 (2005).
    [CrossRef]
  20. H. Caglayan, I. Bulu, E. Ozbay, “Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture,” Opt. Express 13, 1666–1671 (2005).
    [CrossRef] [PubMed]
  21. H. Caglayan, I. Bulu, E. Ozbay, “Beaming of electromagnetic waves emitted through a subwavelength annular aperture,” J. Opt. Soc. Am. B 23, 419–422 (2006).
    [CrossRef]
  22. T. Ishi, J. Fujikata, K. Makita, T. Baba, K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
    [CrossRef]
  23. Z. Yu, G. Veronis, S. Fan, M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
    [CrossRef]
  24. D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
    [CrossRef]
  25. N. C. Panoiu, R. M. Osgood, “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett. 32, 2825 (2007).
    [CrossRef] [PubMed]
  26. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, New York, 1997), chap. 11, 5th ed.
  27. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005), 3rd ed.
  28. RSoft Design Group, FullWAVE™ 6.0.2, http://www.rsoftdesign.com/.
  29. J. B. Pendry, L. Martín-Moreno, F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
    [CrossRef] [PubMed]
  30. A. Roberts, “Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen,” J. Opt. Soc. Am. A 4, 1970–1983 (1987).
    [CrossRef]
  31. F. J. García de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10, 1475–1484 (2002).
  32. S. H. Zaidi, M. Yousaf, S. R. J. Brueck, “Grating coupling to surface plasma waves. I. First-order coupling,” J. Opt. Soc. Am. B 8, 770–779 (1991).
    [CrossRef]
  33. O. T. A. Janssen, H. P. Urbach, G.W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99, 043902 (2007).
    [CrossRef] [PubMed]
  34. D. A. Thomas, H. P. Hughes, “Enhanced optical transmission through a subwavelength 1d aperture,” Solid State Commun. 129, 519–524 (2004).
    [CrossRef]
  35. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
    [CrossRef] [PubMed]
  36. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
    [CrossRef] [PubMed]
  37. L. Tang, D. A. B. Miller, A. K. Okya, J. A. Matteo, Y. Yuen, K. C. Saraswat, L. Hesselink, “C-shaped nanoaperture-enhanced germanium photodetector,” Opt. Lett. 31, 1519–1521 (2006).
    [CrossRef] [PubMed]

2007 (3)

C.-K. Chang, D.-Z. Lin, C.-S. Yeh, C.-K. Lee, Y.-C. Chang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90, 061113 (2007).
[CrossRef]

N. C. Panoiu, R. M. Osgood, “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett. 32, 2825 (2007).
[CrossRef] [PubMed]

O. T. A. Janssen, H. P. Urbach, G.W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99, 043902 (2007).
[CrossRef] [PubMed]

2006 (6)

2005 (9)

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,” J. Opt. A: Pure Appl. Opt. 7, S152–S158 (2005).
[CrossRef]

H. Caglayan, I. Bulu, E. Ozbay, “Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture,” Opt. Express 13, 1666–1671 (2005).
[CrossRef] [PubMed]

H. Cao, A. Agrawa, A. Nahata, “Controlling the transmission resonance lineshape of a single subwavelength aperture,” Opt. Express 13, 763–769 (2005).
[CrossRef] [PubMed]

A. Agrawal, H. Cao, A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,” Opt. Express 13, 3535–3542 (2005).
[CrossRef] [PubMed]

T. Ishi, J. Fujikata, K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys. 44, L170–L172 (2005).
[CrossRef]

E. Popov, M. Nevière, A.-L. Fehrembach, N. Bonod, “Optimization of plasmon excitation at structured apertures,” Appl. Opt. 44, 6141–6154 (2005).
[CrossRef] [PubMed]

E. Popov, M. Nevière, A.-L. Fehrembach, N. Bonod, “Enhanced transmission of light through a circularly structured aperture,” Appl. Opt. 44, 6898–6904 (2005).
[CrossRef] [PubMed]

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

T. Ishi, J. Fujikata, K. Makita, T. Baba, K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

2004 (5)

J. B. Pendry, L. Martín-Moreno, F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

D. A. Thomas, H. P. Hughes, “Enhanced optical transmission through a subwavelength 1d aperture,” Solid State Commun. 129, 519–524 (2004).
[CrossRef]

A. Degiron, T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12, 3694–3700 (2004).
[CrossRef] [PubMed]

H. J. Lezec, T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
[CrossRef] [PubMed]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040–2042 (2004).
[CrossRef]

2003 (5)

A. Nahata, R. A. Linke, T. Ishi, K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28, 423–425 (2003).
[CrossRef] [PubMed]

S. Shinada, J. Hashizume, F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83, 836–838 (2003).
[CrossRef]

F. I. Baida, D. Van Labeke, B. Guizal, “Enhanced confined light transmission by single subwavelength apertures in metallic films,” Appl. Opt. 42, 6811–6815 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef] [PubMed]

2002 (3)

F. J. García de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10, 1475–1484 (2002).

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

2001 (1)

1991 (1)

1987 (1)

Agrawa, A.

Agrawal, A.

Baba, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

Baida, F. I.

Barnes, W. L.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef] [PubMed]

Bonod, N.

Brongersma, M. L.

Z. Yu, G. Veronis, S. Fan, M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

Brueck, S. R. J.

Bulu, I.

Caglayan, H.

Cao, H.

Chang, C. K.

Chang, C.-K.

C.-K. Chang, D.-Z. Lin, C.-S. Yeh, C.-K. Lee, Y.-C. Chang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90, 061113 (2007).
[CrossRef]

Chang, Y. C.

Chang, Y.-C.

C.-K. Chang, D.-Z. Lin, C.-S. Yeh, C.-K. Lee, Y.-C. Chang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90, 061113 (2007).
[CrossRef]

de Abajo, F. J. García

Degiron, A.

A. Degiron, T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12, 3694–3700 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Ebbesen, T. W.

A. Degiron, T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12, 3694–3700 (2004).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
[CrossRef]

Fan, S.

Z. Yu, G. Veronis, S. Fan, M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

Fehrembach, A.-L.

Feng, B.

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Fujikata, J.

T. Ishi, J. Fujikata, K. Makita, T. Baba, K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

T. Ishi, J. Fujikata, K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys. 44, L170–L172 (2005).
[CrossRef]

García-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Gray, S. K.

K. L. Shuford, M. A. Ratner, S. K. Gray, G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B: Lasers Opt. 84, 11–18 (2006).
[CrossRef]

Guizal, B.

Hagness, S. C.

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005), 3rd ed.

Hashizume, J.

S. Shinada, J. Hashizume, F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83, 836–838 (2003).
[CrossRef]

Hesselink, L.

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,” J. Opt. A: Pure Appl. Opt. 7, S152–S158 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040–2042 (2004).
[CrossRef]

Hooft, G.W. ’t

O. T. A. Janssen, H. P. Urbach, G.W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99, 043902 (2007).
[CrossRef] [PubMed]

Howe, D. G.

Hughes, H. P.

D. A. Thomas, H. P. Hughes, “Enhanced optical transmission through a subwavelength 1d aperture,” Solid State Commun. 129, 519–524 (2004).
[CrossRef]

Ishi, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

T. Ishi, J. Fujikata, K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys. 44, L170–L172 (2005).
[CrossRef]

A. Nahata, R. A. Linke, T. Ishi, K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28, 423–425 (2003).
[CrossRef] [PubMed]

Janssen, O. T. A.

O. T. A. Janssen, H. P. Urbach, G.W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99, 043902 (2007).
[CrossRef] [PubMed]

Kataja, K.

Koyama, F.

S. Shinada, J. Hashizume, F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83, 836–838 (2003).
[CrossRef]

Lawrence, C. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,” J. Opt. A: Pure Appl. Opt. 7, S152–S158 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040–2042 (2004).
[CrossRef]

Lee, C. K.

Lee, C.-K.

C.-K. Chang, D.-Z. Lin, C.-S. Yeh, C.-K. Lee, Y.-C. Chang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90, 061113 (2007).
[CrossRef]

Lewen, G. D.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

Lezec, H. J.

H. J. Lezec, T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
[CrossRef]

Lin, D. Z.

Lin, D.-Z.

C.-K. Chang, D.-Z. Lin, C.-S. Yeh, C.-K. Lee, Y.-C. Chang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90, 061113 (2007).
[CrossRef]

Lin, M. W.

Lin, M.-W.

C.-K. Chang, D.-Z. Lin, C.-S. Yeh, C.-K. Lee, Y.-C. Chang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90, 061113 (2007).
[CrossRef]

Linke, R. A.

A. Nahata, R. A. Linke, T. Ishi, K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28, 423–425 (2003).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
[CrossRef]

Liu, J. M.

Liu, J.-M.

C.-K. Chang, D.-Z. Lin, C.-S. Yeh, C.-K. Lee, Y.-C. Chang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90, 061113 (2007).
[CrossRef]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,” J. Opt. A: Pure Appl. Opt. 7, S152–S158 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040–2042 (2004).
[CrossRef]

Makita, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Matteo, J. A.

Miller, D. A. B.

Nahata, A.

Nevière, M.

Ohashi, K.

T. Ishi, J. Fujikata, K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys. 44, L170–L172 (2005).
[CrossRef]

T. Ishi, J. Fujikata, K. Makita, T. Baba, K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

A. Nahata, R. A. Linke, T. Ishi, K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28, 423–425 (2003).
[CrossRef] [PubMed]

Okya, A. K.

Olkkonen, J.

Osgood, R. M.

Ozbay, E.

Panoiu, N. C.

Pellerin, K. M.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
[CrossRef]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

Popov, E.

Ratner, M. A.

K. L. Shuford, M. A. Ratner, S. K. Gray, G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B: Lasers Opt. 84, 11–18 (2006).
[CrossRef]

Roberts, A.

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,” J. Opt. A: Pure Appl. Opt. 7, S152–S158 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040–2042 (2004).
[CrossRef]

Saraswat, K. C.

Schaadt, D. M.

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Schatz, G. C.

K. L. Shuford, M. A. Ratner, S. K. Gray, G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B: Lasers Opt. 84, 11–18 (2006).
[CrossRef]

Shinada, S.

S. Shinada, J. Hashizume, F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83, 836–838 (2003).
[CrossRef]

Shuford, K. L.

K. L. Shuford, M. A. Ratner, S. K. Gray, G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B: Lasers Opt. 84, 11–18 (2006).
[CrossRef]

Taflove, A.

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005), 3rd ed.

Tang, L.

Thio, T.

Thomas, D. A.

D. A. Thomas, H. P. Hughes, “Enhanced optical transmission through a subwavelength 1d aperture,” Solid State Commun. 129, 519–524 (2004).
[CrossRef]

Urbach, H. P.

O. T. A. Janssen, H. P. Urbach, G.W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99, 043902 (2007).
[CrossRef] [PubMed]

Van Labeke, D.

Veronis, G.

Z. Yu, G. Veronis, S. Fan, M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, New York, 1997), chap. 11, 5th ed.

Yeh, C. S.

Yeh, C.-S.

C.-K. Chang, D.-Z. Lin, C.-S. Yeh, C.-K. Lee, Y.-C. Chang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90, 061113 (2007).
[CrossRef]

Yeh, J. T.

Yeh, J.-T.

C.-K. Chang, D.-Z. Lin, C.-S. Yeh, C.-K. Lee, Y.-C. Chang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90, 061113 (2007).
[CrossRef]

Yousaf, M.

Yu, E. T.

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Yu, Z.

Z. Yu, G. Veronis, S. Fan, M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

Yuen, Y.

Zaidi, S. H.

Appl. Opt. (3)

Appl. Phys. B: Lasers Opt. (1)

K. L. Shuford, M. A. Ratner, S. K. Gray, G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B: Lasers Opt. 84, 11–18 (2006).
[CrossRef]

Appl. Phys. Lett. (5)

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040–2042 (2004).
[CrossRef]

S. Shinada, J. Hashizume, F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83, 836–838 (2003).
[CrossRef]

Z. Yu, G. Veronis, S. Fan, M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

C.-K. Chang, D.-Z. Lin, C.-S. Yeh, C.-K. Lee, Y.-C. Chang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90, 061113 (2007).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,” J. Opt. A: Pure Appl. Opt. 7, S152–S158 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (2)

T. Ishi, J. Fujikata, K. Makita, T. Baba, K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

T. Ishi, J. Fujikata, K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys. 44, L170–L172 (2005).
[CrossRef]

Nanotechnology (1)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (5)

Phys. Rev. Lett. (2)

O. T. A. Janssen, H. P. Urbach, G.W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99, 043902 (2007).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

Science (2)

J. B. Pendry, L. Martín-Moreno, F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Solid State Commun. (1)

D. A. Thomas, H. P. Hughes, “Enhanced optical transmission through a subwavelength 1d aperture,” Solid State Commun. 129, 519–524 (2004).
[CrossRef]

Other (3)

A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, New York, 1997), chap. 11, 5th ed.

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005), 3rd ed.

RSoft Design Group, FullWAVE™ 6.0.2, http://www.rsoftdesign.com/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic cross-section for a 5-period grating; a plane wave incident from above is collected over the large area of the grating (height h) and coupled through the hole (diameter d, depth t) to be absorbed in the substrate. The parameter g is measured from the center of the hole to the center of the first grating tooth. In the case of a circular grating, there is cylindrical symmetry about a line through the center, whereas in the case of a linear grating, there is translational invariance in the direction perpendicular to the figure.We show below that absorption is larger when the hatched areas are air rather than metal.

Fig. 2.
Fig. 2.

Amplitude of the normal component of the electric field for 10-period circular (left) and linear (right) antenna at the resonant frequency for each grating (wavelength λ=10.2µm for circular grating and λ=10.6µm for linear grating). In each cases the grating period is Λ=10µm, grating height is 1.35µm, grating duty cycle is 0.5, hole depth is 0.1µm, hole diameter is 5µm, and g=1.5Λ. The field amplitude is scaled relative to the magnitude of the incident field. The horizontal and vertical axes are labeled in µm units.

Fig. 3.
Fig. 3.

Spectrum of absorption for 10-period circular grating for various values of g, the distance between the grating and the hole. The spectra are normalized to the λ=10.2µm absorption in the case of a metal film with a hole but no grating. Upper inset: peak absorption as a function of g with hatched area in Fig. 1 as air (solid line) or metal (dashed line). Lower inset: similar to solid line in upper inset, but grating height h=200 nm. Λ=10µm is the grating period.

Fig. 4.
Fig. 4.

Varying hole diameter for a 10-period circular grating. Solid line is absorption enhancement, dashed line is the S/N enhancement figure-of-merit F.

Fig. 5.
Fig. 5.

Varying number of grating periods, N, for a circular grating (left) and linear grating (right) with parameters as in Fig. 2. The main plots show the spectral response of the absorption enhancement, and the insets show the F for the wavelengths corresponding to the peaks in the spectral response.

Metrics