Abstract

Recently we demonstrated the applicability of a holographic method for shaping complex wavefronts to spatial light modulator (SLM) systems. Here we examine the potential of this approach for optical micromanipulation. Since the method allows one to shape both amplitude and phase of a trapping light field independently and thus provides full control over scattering and gradient forces, it extends the possibilities of commonly used holographic tweezers systems. We utilize two cascaded phase-diffractive elements which can actually be display side-by-side on a single programmable phase modulator. Theoretically the obtainable light efficiency is close to 100%, in our case the major practical limitation arises from absorption in the SLM. We present data which demonstrate the ability to create user-defined “light pathways” for microparticles driven by transverse radiation pressure.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of s single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  3. A. Constable, Jinha Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a fiber-optical light-force trap," Opt. Lett. 18, 1867-1869 (1993).
    [CrossRef] [PubMed]
  4. A. Chowdhury, B. J. Ackerson, N. A. Clark, "Laser-Induced Freezing," Phys. Rev. Lett. 55, 833-836 (1985).
    [CrossRef] [PubMed]
  5. A. Casaburi, G. Pesce, P. Zemanek, and A. Sasso, "Two- and three-beam interferometric optical tweezers," Opt. Commun. 251, 393-404 (2005).
    [CrossRef]
  6. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000).
    [CrossRef]
  7. R. L. Eriksen, V. R. Daria, and J. Gluckstad, "Fully dynamic multiple-beam optical tweezers," Opt. Express 10, 597-602 (2002).
    [PubMed]
  8. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
    [CrossRef]
  9. A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, "Diffractive optical tweezers in the Fresnel regime," Opt. Express 12, 2243-2250 (2004).
    [CrossRef] [PubMed]
  10. Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
    [CrossRef]
  11. A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
    [CrossRef] [PubMed]
  12. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. K¨as, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001).
    [CrossRef] [PubMed]
  13. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, "Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner," Opt. Lett. 22, 52-54 (1997).
    [CrossRef] [PubMed]
  14. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
    [CrossRef]
  15. P. Galajda and P. Ormos, "Complex micromachines produced and driven by light," Appl. Phys. Lett. 78, 249-251 (2001).
    [CrossRef]
  16. J. P. Kirk and A. L. Jones, "Phase-Only Complex-Valued Spatial Filter," J. Opt. Soc. Am. 61, 1023-1028 (1971).
    [CrossRef]
  17. Y. Roichman and D. G. Grier, "Projecting Extended Optical Traps with Shape-Phase Holography," Opt. Lett. 31, 1675-1677 (2006).
    [CrossRef] [PubMed]
  18. M. A. A. Neil, T. Wilson, and R. Ju¡skaitis, "A wavefront generator for complex pupil function synthesis and point spread function engineering," J. Microsc. 197, 219-223 (2000).
    [CrossRef] [PubMed]
  19. R. Tudela, E. Mart’ýn-Badosa, I. Labastida, S. Vallmitjana, I. Juvells, and A. Carnicer, "Full complex Fresnel holograms displayed on liquid crystal devices," J. Opt. A 5, 189-194 (2003).
    [CrossRef]
  20. M.-L. Hsieh, M.-L. Chen, and C.-J. Cheng, "Improvement of the complex modulated characteristic of cascaded liquid crystal spatial light modulators by using a novel amplitude compensated technique," Opt. Eng. 46, 07501 (2007).
    [CrossRef]
  21. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, "Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam," Phys. Rev. Lett. 88, 053601 (2002).
    [CrossRef] [PubMed]
  22. J. E. Curtis and D. G. Grier, "Modulated optical vortices," Opt. Lett. 28, 872-874 (2003).
    [CrossRef] [PubMed]
  23. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Phys. Rev. Lett. 100, 013602 (2008).
    [CrossRef] [PubMed]
  24. H. Bartelt, "Computer-generated holographic component with optimum light efficiency," Appl. Opt. 23, 1499-1502 (1984).
    [CrossRef] [PubMed]
  25. H. O. Bartelt, "Applications of the tandem component: an element with optimum light efficiency," Appl. Opt. 24, 3811-3816 (1985).
    [CrossRef] [PubMed]
  26. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, "Near-perfect hologram reconstruction with a spatial light modulator," Opt. Express 16, 2597-2603 (2008).
    [CrossRef] [PubMed]
  27. A. Jesacher, S. F¨urhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, "Reverse orbiting of microparticles in optical vortices," Opt. Lett. 31, 2824-2827 (2006).
    [CrossRef] [PubMed]
  28. G. O. Reynolds, J. B. Develis, and B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (SPIE, 1989).
    [CrossRef]
  29. B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, 2000).
  30. R. W. Gerchberg, and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).
  31. A. Jesacher, S. Furhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, "Holographic optical tweezers for object manipulations at an air-liquid surface," Opt. Express 14, 6342-6352 (2006).
    [CrossRef] [PubMed]
  32. C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, "Optical Measurement of Surface Tension in a Miniaturized Air-Liquid Interface and its Application in Lung Physiology," Biophys. J.  89, 1353-1361 (2005).
    [CrossRef] [PubMed]
  33. M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, "Synthesis of digital holograms by direct binary search," Appl. Opt. 26, 2788-2798 (1987).
    [CrossRef] [PubMed]

2008 (2)

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Phys. Rev. Lett. 100, 013602 (2008).
[CrossRef] [PubMed]

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, "Near-perfect hologram reconstruction with a spatial light modulator," Opt. Express 16, 2597-2603 (2008).
[CrossRef] [PubMed]

2007 (1)

M.-L. Hsieh, M.-L. Chen, and C.-J. Cheng, "Improvement of the complex modulated characteristic of cascaded liquid crystal spatial light modulators by using a novel amplitude compensated technique," Opt. Eng. 46, 07501 (2007).
[CrossRef]

2006 (3)

2005 (2)

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, "Optical Measurement of Surface Tension in a Miniaturized Air-Liquid Interface and its Application in Lung Physiology," Biophys. J.  89, 1353-1361 (2005).
[CrossRef] [PubMed]

A. Casaburi, G. Pesce, P. Zemanek, and A. Sasso, "Two- and three-beam interferometric optical tweezers," Opt. Commun. 251, 393-404 (2005).
[CrossRef]

2004 (1)

2003 (2)

J. E. Curtis and D. G. Grier, "Modulated optical vortices," Opt. Lett. 28, 872-874 (2003).
[CrossRef] [PubMed]

R. Tudela, E. Mart’ýn-Badosa, I. Labastida, S. Vallmitjana, I. Juvells, and A. Carnicer, "Full complex Fresnel holograms displayed on liquid crystal devices," J. Opt. A 5, 189-194 (2003).
[CrossRef]

2002 (3)

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, "Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam," Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

R. L. Eriksen, V. R. Daria, and J. Gluckstad, "Fully dynamic multiple-beam optical tweezers," Opt. Express 10, 597-602 (2002).
[PubMed]

2001 (2)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. K¨as, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

P. Galajda and P. Ormos, "Complex micromachines produced and driven by light," Appl. Phys. Lett. 78, 249-251 (2001).
[CrossRef]

2000 (2)

M. A. A. Neil, T. Wilson, and R. Ju¡skaitis, "A wavefront generator for complex pupil function synthesis and point spread function engineering," J. Microsc. 197, 219-223 (2000).
[CrossRef] [PubMed]

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

1998 (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

1997 (1)

1996 (1)

Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

1993 (1)

1992 (1)

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

1987 (1)

1986 (1)

1985 (2)

1984 (1)

1972 (1)

R. W. Gerchberg, and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

1971 (1)

1970 (1)

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Ackerson, B. J.

A. Chowdhury, B. J. Ackerson, N. A. Clark, "Laser-Induced Freezing," Phys. Rev. Lett. 55, 833-836 (1985).
[CrossRef] [PubMed]

Allebach, J. P.

Allen, L.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, "Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam," Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef] [PubMed]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, "Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner," Opt. Lett. 22, 52-54 (1997).
[CrossRef] [PubMed]

Amato-Grill, J.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Phys. Rev. Lett. 100, 013602 (2008).
[CrossRef] [PubMed]

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. K¨as, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

Asakura, T.

Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

Ashkin, A.

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of s single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Bartelt, H.

Bartelt, H. O.

Bernet, S.

Bertocchi, C.

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, "Optical Measurement of Surface Tension in a Miniaturized Air-Liquid Interface and its Application in Lung Physiology," Biophys. J.  89, 1353-1361 (2005).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Carnicer, A.

R. Tudela, E. Mart’ýn-Badosa, I. Labastida, S. Vallmitjana, I. Juvells, and A. Carnicer, "Full complex Fresnel holograms displayed on liquid crystal devices," J. Opt. A 5, 189-194 (2003).
[CrossRef]

Casaburi, A.

A. Casaburi, G. Pesce, P. Zemanek, and A. Sasso, "Two- and three-beam interferometric optical tweezers," Opt. Commun. 251, 393-404 (2005).
[CrossRef]

Chen, M.-L.

M.-L. Hsieh, M.-L. Chen, and C.-J. Cheng, "Improvement of the complex modulated characteristic of cascaded liquid crystal spatial light modulators by using a novel amplitude compensated technique," Opt. Eng. 46, 07501 (2007).
[CrossRef]

Cheng, C.-J.

M.-L. Hsieh, M.-L. Chen, and C.-J. Cheng, "Improvement of the complex modulated characteristic of cascaded liquid crystal spatial light modulators by using a novel amplitude compensated technique," Opt. Eng. 46, 07501 (2007).
[CrossRef]

Chowdhury, A.

A. Chowdhury, B. J. Ackerson, N. A. Clark, "Laser-Induced Freezing," Phys. Rev. Lett. 55, 833-836 (1985).
[CrossRef] [PubMed]

Chu, S.

Clark, N. A.

A. Chowdhury, B. J. Ackerson, N. A. Clark, "Laser-Induced Freezing," Phys. Rev. Lett. 55, 833-836 (1985).
[CrossRef] [PubMed]

Constable, A.

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. K¨as, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

Curtis, J. E.

J. E. Curtis and D. G. Grier, "Modulated optical vortices," Opt. Lett. 28, 872-874 (2003).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Daria, V. R.

Dholakia, K.

Dietl, P.

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, "Optical Measurement of Surface Tension in a Miniaturized Air-Liquid Interface and its Application in Lung Physiology," Biophys. J.  89, 1353-1361 (2005).
[CrossRef] [PubMed]

Dziedzic, J. M.

Eriksen, R. L.

F¨urhapter, S.

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

Furhapter, S.

Galajda, P.

P. Galajda and P. Ormos, "Complex micromachines produced and driven by light," Appl. Phys. Lett. 78, 249-251 (2001).
[CrossRef]

Gerchberg, R. W.

R. W. Gerchberg, and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

Gluckstad, J.

Grier, D. G.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Phys. Rev. Lett. 100, 013602 (2008).
[CrossRef] [PubMed]

Y. Roichman and D. G. Grier, "Projecting Extended Optical Traps with Shape-Phase Holography," Opt. Lett. 31, 1675-1677 (2006).
[CrossRef] [PubMed]

J. E. Curtis and D. G. Grier, "Modulated optical vortices," Opt. Lett. 28, 872-874 (2003).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Guck, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. K¨as, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Haller, T.

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, "Optical Measurement of Surface Tension in a Miniaturized Air-Liquid Interface and its Application in Lung Physiology," Biophys. J.  89, 1353-1361 (2005).
[CrossRef] [PubMed]

Harada, Y.

Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

Heckenberg, N. R.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

Hsieh, M.-L.

M.-L. Hsieh, M.-L. Chen, and C.-J. Cheng, "Improvement of the complex modulated characteristic of cascaded liquid crystal spatial light modulators by using a novel amplitude compensated technique," Opt. Eng. 46, 07501 (2007).
[CrossRef]

Jesacher, A.

Jinha Kim, A.

Jones, A. L.

Ju¡skaitis, R.

M. A. A. Neil, T. Wilson, and R. Ju¡skaitis, "A wavefront generator for complex pupil function synthesis and point spread function engineering," J. Microsc. 197, 219-223 (2000).
[CrossRef] [PubMed]

Juvells, I.

R. Tudela, E. Mart’ýn-Badosa, I. Labastida, S. Vallmitjana, I. Juvells, and A. Carnicer, "Full complex Fresnel holograms displayed on liquid crystal devices," J. Opt. A 5, 189-194 (2003).
[CrossRef]

Kas, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. K¨as, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

Kirk, J. P.

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Labastida, I.

R. Tudela, E. Mart’ýn-Badosa, I. Labastida, S. Vallmitjana, I. Juvells, and A. Carnicer, "Full complex Fresnel holograms displayed on liquid crystal devices," J. Opt. A 5, 189-194 (2003).
[CrossRef]

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, "Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam," Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef] [PubMed]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. K¨as, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

Mart’ýn-Badosa, E.

R. Tudela, E. Mart’ýn-Badosa, I. Labastida, S. Vallmitjana, I. Juvells, and A. Carnicer, "Full complex Fresnel holograms displayed on liquid crystal devices," J. Opt. A 5, 189-194 (2003).
[CrossRef]

Maurer, C.

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. K¨as, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

Neil, M. A. A.

M. A. A. Neil, T. Wilson, and R. Ju¡skaitis, "A wavefront generator for complex pupil function synthesis and point spread function engineering," J. Microsc. 197, 219-223 (2000).
[CrossRef] [PubMed]

Nieminen, T. A.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, "Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam," Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef] [PubMed]

Ormos, P.

P. Galajda and P. Ormos, "Complex micromachines produced and driven by light," Appl. Phys. Lett. 78, 249-251 (2001).
[CrossRef]

Padgett, M. J.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, "Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam," Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef] [PubMed]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, "Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner," Opt. Lett. 22, 52-54 (1997).
[CrossRef] [PubMed]

Pesce, G.

A. Casaburi, G. Pesce, P. Zemanek, and A. Sasso, "Two- and three-beam interferometric optical tweezers," Opt. Commun. 251, 393-404 (2005).
[CrossRef]

Putz, G.

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, "Optical Measurement of Surface Tension in a Miniaturized Air-Liquid Interface and its Application in Lung Physiology," Biophys. J.  89, 1353-1361 (2005).
[CrossRef] [PubMed]

Ravasio, A.

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, "Optical Measurement of Surface Tension in a Miniaturized Air-Liquid Interface and its Application in Lung Physiology," Biophys. J.  89, 1353-1361 (2005).
[CrossRef] [PubMed]

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Ritsch-Marte, M.

Roichman, Y.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Phys. Rev. Lett. 100, 013602 (2008).
[CrossRef] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Phys. Rev. Lett. 100, 013602 (2008).
[CrossRef] [PubMed]

Y. Roichman and D. G. Grier, "Projecting Extended Optical Traps with Shape-Phase Holography," Opt. Lett. 31, 1675-1677 (2006).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

Sasso, A.

A. Casaburi, G. Pesce, P. Zemanek, and A. Sasso, "Two- and three-beam interferometric optical tweezers," Opt. Commun. 251, 393-404 (2005).
[CrossRef]

Saxton, W. O.

R. W. Gerchberg, and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

Schwaighofer, A.

Seldowitz, M. A.

Simpson, N. B.

Sun, B.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Phys. Rev. Lett. 100, 013602 (2008).
[CrossRef] [PubMed]

Sweeney, D. W.

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Tudela, R.

R. Tudela, E. Mart’ýn-Badosa, I. Labastida, S. Vallmitjana, I. Juvells, and A. Carnicer, "Full complex Fresnel holograms displayed on liquid crystal devices," J. Opt. A 5, 189-194 (2003).
[CrossRef]

Vallmitjana, S.

R. Tudela, E. Mart’ýn-Badosa, I. Labastida, S. Vallmitjana, I. Juvells, and A. Carnicer, "Full complex Fresnel holograms displayed on liquid crystal devices," J. Opt. A 5, 189-194 (2003).
[CrossRef]

Wilson, T.

M. A. A. Neil, T. Wilson, and R. Ju¡skaitis, "A wavefront generator for complex pupil function synthesis and point spread function engineering," J. Microsc. 197, 219-223 (2000).
[CrossRef] [PubMed]

Zemanek, P.

A. Casaburi, G. Pesce, P. Zemanek, and A. Sasso, "Two- and three-beam interferometric optical tweezers," Opt. Commun. 251, 393-404 (2005).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

P. Galajda and P. Ormos, "Complex micromachines produced and driven by light," Appl. Phys. Lett. 78, 249-251 (2001).
[CrossRef]

Biophys. J. (3)

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. K¨as, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, "Optical Measurement of Surface Tension in a Miniaturized Air-Liquid Interface and its Application in Lung Physiology," Biophys. J.  89, 1353-1361 (2005).
[CrossRef] [PubMed]

J. Microsc. (1)

M. A. A. Neil, T. Wilson, and R. Ju¡skaitis, "A wavefront generator for complex pupil function synthesis and point spread function engineering," J. Microsc. 197, 219-223 (2000).
[CrossRef] [PubMed]

J. Opt. A (1)

R. Tudela, E. Mart’ýn-Badosa, I. Labastida, S. Vallmitjana, I. Juvells, and A. Carnicer, "Full complex Fresnel holograms displayed on liquid crystal devices," J. Opt. A 5, 189-194 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

Nature (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

Opt. Commun. (4)

A. Casaburi, G. Pesce, P. Zemanek, and A. Sasso, "Two- and three-beam interferometric optical tweezers," Opt. Commun. 251, 393-404 (2005).
[CrossRef]

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

Opt. Eng. (1)

M.-L. Hsieh, M.-L. Chen, and C.-J. Cheng, "Improvement of the complex modulated characteristic of cascaded liquid crystal spatial light modulators by using a novel amplitude compensated technique," Opt. Eng. 46, 07501 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Optik (1)

R. W. Gerchberg, and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

Phys. Rev. Lett. (4)

A. Chowdhury, B. J. Ackerson, N. A. Clark, "Laser-Induced Freezing," Phys. Rev. Lett. 55, 833-836 (1985).
[CrossRef] [PubMed]

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, "Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam," Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Phys. Rev. Lett. 100, 013602 (2008).
[CrossRef] [PubMed]

Other (2)

G. O. Reynolds, J. B. Develis, and B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (SPIE, 1989).
[CrossRef]

B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, 2000).

Supplementary Material (3)

» Media 1: AVI (3049 KB)     
» Media 2: AVI (3134 KB)     
» Media 3: AVI (2846 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Principle of the method. The reticle in the object plane are created by the two phase masks P1 and P2, which are subsequently arranged in a 2-f setup. P1 generates the modulus |A(u,ν)| in the plane of P2, where P2 shapes the desired phase Φ(u,ν). (b) Schematic of a trapping light field, the amplitude (upper image) and phase of which are designed to collect and guide microparticles to the center of the “crosshairs”.

Fig. 2.
Fig. 2.

Experimental setup. The complex trapping field is created stepwise: Illuminating pattern 1 with a collimated CW Ytterbium fiber laser creates the amplitude profile A(u,ν) in the plane of pattern 2, which reshapes the “random” phase to Φ(kx ,ky ). The modulated laser beam is subsequently coupled into a microscope objective, finally taking the desired form a(x,y) exp[(x,y)] in the object plane.

Fig. 3.
Fig. 3.

Experimental realization of the “reticle” trap. Upper left image: Experimental situation. Trapping is performed from below through a glass cover slip with a Zeiss Neofluar 100× objective, NA=1.3. Upper right image: Trap, projected at a mirror. Movie strip (frames taken out of the file reticle.avi, size 3 MB): Four trapped silica microbeads are alternately pushed in and out by changing the sign of the transverse photon momentum. The particles are three-dimensionally trapped, which is demonstrated by lifting them off the ground of the object chamber (note the encircled untrapped particles in the lower left corner getting out of focus). [Media 1]

Fig. 4.
Fig. 4.

Upper left image: Trapping is performed at an air-liquid interface, which axially stabilizes the hydrophobic microparticles (polystyrene beads, 3 µm diameter). Upper right image:“Square trap”. The microscopic light square traps particles and moves them along its boundaries. The corresponding movie strip shows it “in action” (movie file square.avi, size 2.8 MB). The guiding performance of a asymmetric structure is demonstrated by the lower movie strip (movie file austria.avi, size 3.1 MB). [Media 2][Media 3]

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P 2 ( u , v ) = mod 2 π { Φ ( u , v ) Θ ( u , v ) } ,

Metrics