Abstract

Broad-area vertical-cavity surface-emitting lasers (BA-VCSELs) can exhibit a state of spatially incoherent emission, as we recently reported in [M. Peeters et al., Opt. Express, 13, 9337 (2005)]. Here, we experimentally study the evolution of a BA-VCSEL under pulsed operation from well-defined modal emission with a multitude of transverse cavity modes to such spatially incoherent emission. The transition is studied using a high-speed intensified CCD camera and differential image analysis with which single-shot measurements of the imaged nearfield, farfield, spatial coherence, and spectral emission properties are acquired. This combination of experimental characterization tools allows for a detailed description of the BA-VCSEL’s emission behavior, which is necessary for an in-depth understanding of the processes involved. We find the interplay between the thermal chirp and the build-up of a spatially distributed thermal lens to be decisive for the break-up of the global cavity modes.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, "Single Fundamental-Mode Output Power Exceeding 6 mW From VCSELs With a Shallow Surface Relief," IEEE Photon. Technol. Lett. 16, 368-370 (2004).
    [CrossRef]
  2. C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-220 (1990).
    [CrossRef]
  3. C. Degen, I. Fischer, and W. Elsaßer, "Transverse modes in oxide confined VCSELs: influence of pump profile, spatial hole burning, and thermal effects," Opt. Express 5, 38-47 (1999).
    [CrossRef] [PubMed]
  4. A. Valle, J. Sarma, and K. A. Shore, "Dynamics of transverse mode competition in vertical cavity surface emitting laser diodes," Opt. Commun. 115, 297-302 (1995).
    [CrossRef]
  5. M. Giudici, J. R. Tredicce, G. Vaschenko, J. J. Rocca, and C. S. Menoni, "Spatio-temporal dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses," Opt. Commun. 158, 313-321 (1998).
    [CrossRef]
  6. J. Mulet and S. Balle, "Transverse mode dynamics in vertical-cavity surface-emitting lasers: spatiotemporal versus modal expansion descriptions," Phys. Rev. A 66,053 802 (2002).
    [CrossRef]
  7. A. Barchanski, T. Gensty, C. Degen, I. Fischer, and Elsäßer, "Picosecond emission dynamics of vertical-cavity surface-emitting lasers: spatial, spectral, and polarization-resolved characterization," IEEE J. Quantum Electron. 39, 850-858 (2003).
    [CrossRef]
  8. K. Becker, I. Fischer, and W. Elsäßer, "Spatio-temporal emission dynamics of VCSELs: modal competition in the turn-on behavior," in Proceedings of SPIE, D. Lenstra, G. Morthier, T. Erneux, and M. Pessa, eds., 5452, 452 (2004).
  9. P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and Elsäßer, "Influence of anisotropies on transverse modes in oxide-confined VCSELs," IEEE J. Quantum Electron. 38, 73-84 (2002).
    [CrossRef]
  10. M. Peeters, G. Verschaffelt, H. Thienpont, S. K. Mandre, I. Fischer, and M. Grabherr, "Spatial decoherence of pulsed broad-area vertical-cavity surface-emitting lasers," Opt. Express 13, 9337-9345 (2005).
    [CrossRef] [PubMed]
  11. F. Zernike, "The concept of degree of coherence and its application to optical problems," Physica 5, 785-795 (1938).
    [CrossRef]
  12. A. C. Schell, "A technique for the determination of the radiation pattern of a partially coherent aperture," IEEE Trans. Antennas Propag. AP-15, 187-188 (1967).
    [CrossRef]
  13. E. Collett and E. Wolf, "Is complete spatial coherence necessary for the generation of highly directional light beams," Opt. Lett. 2, 27-29 (1978).
    [CrossRef] [PubMed]
  14. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Pr., 1995).
  15. S. K. Mandre, W. Elsaßer, I. Fischer, M. Peeters, and G. Verschaffelt, "Determining the temporally and radially resolved temperature distribution inside a pulsed broad-area vertical-cavity surface-emitting laser cavity," Appl. Phys. Lett.  89, 151 106 (2006).
    [CrossRef]
  16. L. Wang and Q. Lin, "The evolutions of the spectrum and spatial coherence of laser radiation in resonators with hard apertures and phase modulation," IEEE J. Quantum Electron. 39, 749-758 (2003).
    [CrossRef]

2005

2004

A. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, "Single Fundamental-Mode Output Power Exceeding 6 mW From VCSELs With a Shallow Surface Relief," IEEE Photon. Technol. Lett. 16, 368-370 (2004).
[CrossRef]

2003

A. Barchanski, T. Gensty, C. Degen, I. Fischer, and Elsäßer, "Picosecond emission dynamics of vertical-cavity surface-emitting lasers: spatial, spectral, and polarization-resolved characterization," IEEE J. Quantum Electron. 39, 850-858 (2003).
[CrossRef]

L. Wang and Q. Lin, "The evolutions of the spectrum and spatial coherence of laser radiation in resonators with hard apertures and phase modulation," IEEE J. Quantum Electron. 39, 749-758 (2003).
[CrossRef]

2002

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and Elsäßer, "Influence of anisotropies on transverse modes in oxide-confined VCSELs," IEEE J. Quantum Electron. 38, 73-84 (2002).
[CrossRef]

1999

1998

M. Giudici, J. R. Tredicce, G. Vaschenko, J. J. Rocca, and C. S. Menoni, "Spatio-temporal dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses," Opt. Commun. 158, 313-321 (1998).
[CrossRef]

1995

A. Valle, J. Sarma, and K. A. Shore, "Dynamics of transverse mode competition in vertical cavity surface emitting laser diodes," Opt. Commun. 115, 297-302 (1995).
[CrossRef]

1990

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-220 (1990).
[CrossRef]

1978

1967

A. C. Schell, "A technique for the determination of the radiation pattern of a partially coherent aperture," IEEE Trans. Antennas Propag. AP-15, 187-188 (1967).
[CrossRef]

1938

F. Zernike, "The concept of degree of coherence and its application to optical problems," Physica 5, 785-795 (1938).
[CrossRef]

Barchanski, A.

A. Barchanski, T. Gensty, C. Degen, I. Fischer, and Elsäßer, "Picosecond emission dynamics of vertical-cavity surface-emitting lasers: spatial, spectral, and polarization-resolved characterization," IEEE J. Quantum Electron. 39, 850-858 (2003).
[CrossRef]

Bava, G. P.

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and Elsäßer, "Influence of anisotropies on transverse modes in oxide-confined VCSELs," IEEE J. Quantum Electron. 38, 73-84 (2002).
[CrossRef]

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-220 (1990).
[CrossRef]

Collett, E.

Debernardi, P.

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and Elsäßer, "Influence of anisotropies on transverse modes in oxide-confined VCSELs," IEEE J. Quantum Electron. 38, 73-84 (2002).
[CrossRef]

Degen, C.

A. Barchanski, T. Gensty, C. Degen, I. Fischer, and Elsäßer, "Picosecond emission dynamics of vertical-cavity surface-emitting lasers: spatial, spectral, and polarization-resolved characterization," IEEE J. Quantum Electron. 39, 850-858 (2003).
[CrossRef]

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and Elsäßer, "Influence of anisotropies on transverse modes in oxide-confined VCSELs," IEEE J. Quantum Electron. 38, 73-84 (2002).
[CrossRef]

C. Degen, I. Fischer, and W. Elsaßer, "Transverse modes in oxide confined VCSELs: influence of pump profile, spatial hole burning, and thermal effects," Opt. Express 5, 38-47 (1999).
[CrossRef] [PubMed]

Elsaßer, W.

Elsäßer, I.

A. Barchanski, T. Gensty, C. Degen, I. Fischer, and Elsäßer, "Picosecond emission dynamics of vertical-cavity surface-emitting lasers: spatial, spectral, and polarization-resolved characterization," IEEE J. Quantum Electron. 39, 850-858 (2003).
[CrossRef]

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and Elsäßer, "Influence of anisotropies on transverse modes in oxide-confined VCSELs," IEEE J. Quantum Electron. 38, 73-84 (2002).
[CrossRef]

Fischer, I.

M. Peeters, G. Verschaffelt, H. Thienpont, S. K. Mandre, I. Fischer, and M. Grabherr, "Spatial decoherence of pulsed broad-area vertical-cavity surface-emitting lasers," Opt. Express 13, 9337-9345 (2005).
[CrossRef] [PubMed]

A. Barchanski, T. Gensty, C. Degen, I. Fischer, and Elsäßer, "Picosecond emission dynamics of vertical-cavity surface-emitting lasers: spatial, spectral, and polarization-resolved characterization," IEEE J. Quantum Electron. 39, 850-858 (2003).
[CrossRef]

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and Elsäßer, "Influence of anisotropies on transverse modes in oxide-confined VCSELs," IEEE J. Quantum Electron. 38, 73-84 (2002).
[CrossRef]

C. Degen, I. Fischer, and W. Elsaßer, "Transverse modes in oxide confined VCSELs: influence of pump profile, spatial hole burning, and thermal effects," Opt. Express 5, 38-47 (1999).
[CrossRef] [PubMed]

Florez, L. T.

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-220 (1990).
[CrossRef]

Gensty, T.

A. Barchanski, T. Gensty, C. Degen, I. Fischer, and Elsäßer, "Picosecond emission dynamics of vertical-cavity surface-emitting lasers: spatial, spectral, and polarization-resolved characterization," IEEE J. Quantum Electron. 39, 850-858 (2003).
[CrossRef]

Giudici, M.

M. Giudici, J. R. Tredicce, G. Vaschenko, J. J. Rocca, and C. S. Menoni, "Spatio-temporal dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses," Opt. Commun. 158, 313-321 (1998).
[CrossRef]

Grabherr, M.

Gustavsson, J. S.

A. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, "Single Fundamental-Mode Output Power Exceeding 6 mW From VCSELs With a Shallow Surface Relief," IEEE Photon. Technol. Lett. 16, 368-370 (2004).
[CrossRef]

Haglund, A.

A. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, "Single Fundamental-Mode Output Power Exceeding 6 mW From VCSELs With a Shallow Surface Relief," IEEE Photon. Technol. Lett. 16, 368-370 (2004).
[CrossRef]

Harbison, J. P.

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-220 (1990).
[CrossRef]

Larsson, A.

A. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, "Single Fundamental-Mode Output Power Exceeding 6 mW From VCSELs With a Shallow Surface Relief," IEEE Photon. Technol. Lett. 16, 368-370 (2004).
[CrossRef]

Lin, Q.

L. Wang and Q. Lin, "The evolutions of the spectrum and spatial coherence of laser radiation in resonators with hard apertures and phase modulation," IEEE J. Quantum Electron. 39, 749-758 (2003).
[CrossRef]

Mandre, S. K.

Menoni, C. S.

M. Giudici, J. R. Tredicce, G. Vaschenko, J. J. Rocca, and C. S. Menoni, "Spatio-temporal dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses," Opt. Commun. 158, 313-321 (1998).
[CrossRef]

Modh, P.

A. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, "Single Fundamental-Mode Output Power Exceeding 6 mW From VCSELs With a Shallow Surface Relief," IEEE Photon. Technol. Lett. 16, 368-370 (2004).
[CrossRef]

Orenstein, M.

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-220 (1990).
[CrossRef]

Peeters, M.

Rocca, J. J.

M. Giudici, J. R. Tredicce, G. Vaschenko, J. J. Rocca, and C. S. Menoni, "Spatio-temporal dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses," Opt. Commun. 158, 313-321 (1998).
[CrossRef]

Sarma, J.

A. Valle, J. Sarma, and K. A. Shore, "Dynamics of transverse mode competition in vertical cavity surface emitting laser diodes," Opt. Commun. 115, 297-302 (1995).
[CrossRef]

Schell, A. C.

A. C. Schell, "A technique for the determination of the radiation pattern of a partially coherent aperture," IEEE Trans. Antennas Propag. AP-15, 187-188 (1967).
[CrossRef]

Shore, K. A.

A. Valle, J. Sarma, and K. A. Shore, "Dynamics of transverse mode competition in vertical cavity surface emitting laser diodes," Opt. Commun. 115, 297-302 (1995).
[CrossRef]

Stoffel, N. G.

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-220 (1990).
[CrossRef]

Thienpont, H.

Tredicce, J. R.

M. Giudici, J. R. Tredicce, G. Vaschenko, J. J. Rocca, and C. S. Menoni, "Spatio-temporal dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses," Opt. Commun. 158, 313-321 (1998).
[CrossRef]

Valle, A.

A. Valle, J. Sarma, and K. A. Shore, "Dynamics of transverse mode competition in vertical cavity surface emitting laser diodes," Opt. Commun. 115, 297-302 (1995).
[CrossRef]

Vaschenko, G.

M. Giudici, J. R. Tredicce, G. Vaschenko, J. J. Rocca, and C. S. Menoni, "Spatio-temporal dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses," Opt. Commun. 158, 313-321 (1998).
[CrossRef]

Verschaffelt, G.

Von Lehmen, A.

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-220 (1990).
[CrossRef]

Vukusic, J.

A. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, "Single Fundamental-Mode Output Power Exceeding 6 mW From VCSELs With a Shallow Surface Relief," IEEE Photon. Technol. Lett. 16, 368-370 (2004).
[CrossRef]

Wang, L.

L. Wang and Q. Lin, "The evolutions of the spectrum and spatial coherence of laser radiation in resonators with hard apertures and phase modulation," IEEE J. Quantum Electron. 39, 749-758 (2003).
[CrossRef]

Wolf, E.

Zernike, F.

F. Zernike, "The concept of degree of coherence and its application to optical problems," Physica 5, 785-795 (1938).
[CrossRef]

Appl. Phys. Lett.

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-220 (1990).
[CrossRef]

IEEE J. Quantum Electron.

A. Barchanski, T. Gensty, C. Degen, I. Fischer, and Elsäßer, "Picosecond emission dynamics of vertical-cavity surface-emitting lasers: spatial, spectral, and polarization-resolved characterization," IEEE J. Quantum Electron. 39, 850-858 (2003).
[CrossRef]

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and Elsäßer, "Influence of anisotropies on transverse modes in oxide-confined VCSELs," IEEE J. Quantum Electron. 38, 73-84 (2002).
[CrossRef]

L. Wang and Q. Lin, "The evolutions of the spectrum and spatial coherence of laser radiation in resonators with hard apertures and phase modulation," IEEE J. Quantum Electron. 39, 749-758 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, "Single Fundamental-Mode Output Power Exceeding 6 mW From VCSELs With a Shallow Surface Relief," IEEE Photon. Technol. Lett. 16, 368-370 (2004).
[CrossRef]

IEEE Trans. Antennas Propag.

A. C. Schell, "A technique for the determination of the radiation pattern of a partially coherent aperture," IEEE Trans. Antennas Propag. AP-15, 187-188 (1967).
[CrossRef]

Opt. Commun.

A. Valle, J. Sarma, and K. A. Shore, "Dynamics of transverse mode competition in vertical cavity surface emitting laser diodes," Opt. Commun. 115, 297-302 (1995).
[CrossRef]

M. Giudici, J. R. Tredicce, G. Vaschenko, J. J. Rocca, and C. S. Menoni, "Spatio-temporal dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses," Opt. Commun. 158, 313-321 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Physica

F. Zernike, "The concept of degree of coherence and its application to optical problems," Physica 5, 785-795 (1938).
[CrossRef]

Other

K. Becker, I. Fischer, and W. Elsäßer, "Spatio-temporal emission dynamics of VCSELs: modal competition in the turn-on behavior," in Proceedings of SPIE, D. Lenstra, G. Morthier, T. Erneux, and M. Pessa, eds., 5452, 452 (2004).

J. Mulet and S. Balle, "Transverse mode dynamics in vertical-cavity surface-emitting lasers: spatiotemporal versus modal expansion descriptions," Phys. Rev. A 66,053 802 (2002).
[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Pr., 1995).

S. K. Mandre, W. Elsaßer, I. Fischer, M. Peeters, and G. Verschaffelt, "Determining the temporally and radially resolved temperature distribution inside a pulsed broad-area vertical-cavity surface-emitting laser cavity," Appl. Phys. Lett.  89, 151 106 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Upper row: a) Nearfield intensity distribution and b) corresponding farfield intensity distribution, both at τ~10 ns. Bottom row: c) Nearfield intensity distribution and d) corresponding farfield intensity distribution, both at τ ~5 µs. The pulse amplitude is 160 mA in all cases.

Fig. 2.
Fig. 2.

Sequence of single-shot measurements of the BA-VCSEL’s farfield emission behavior. The BA-VCSEL was operated in quasi-cw mode with pulse widths of 30 µs and pulse amplitude of 160 mA. The times denoted below the images are the temporal positions of the single-shot measurements after turn-on.

Fig. 3.
Fig. 3.

Optical spectrum for a CW current of 60 mA.

Fig. 4.
Fig. 4.

Sequence of single-shot measurements of the BA-VCSEL’s spectrally dispersed NF emission behavior. The BA-VCSEL was operated in quasi-cw mode with pulse widths of 30 µs and pulse amplitude of 160 mA. The times denoted in the upper right corner of the images are the positions of the single-shot measurements after turn-on. These temporal positions correspond approximately to the positions of the FF measurements in Fig. 2.

Fig. 5.
Fig. 5.

Average wavelength shift of the BA-VCSEL’s emission. The BA-VCSEL was operated in quasi-cw mode with pulse widths of 30 µs and pulse amplitude of 160 mA. The spectral positions were obtained by determining the intensity-weighted averages of the single-shot measurements at different τ.

Fig. 6.
Fig. 6.

Left: RF spectrum of the emitted intensity for CW, 70mA (light gray); and for 1 µs pulses with 1% duty cycle and 22 mA amplitude (dark gray) and 145 mA amplitude (black). The noise floor of the measurement setup is at -58 dBm. Right: Difference between the maximum and minimum amplitude of the RF spectrum as a function of the pulse amplitude for a fixed pulse width of 1 µs and duty cycle of 1% (circles). The line gives the trend and is intended to guide the eye.

Fig. 7.
Fig. 7.

Evolution of the degree of spatial coherence during a pulse train for a pulse amplitude of 22 mA (gray circles) and of 145 mA (black squares). The lines are only intended to guide the eye. The BA-VCSEL was operated in quasi-cw mode with pulse widths of 40 ns.

Fig. 8.
Fig. 8.

Sequence of single-shot measurements of the BA-VCSEL’s spectrally dispersed NF emission behavior. The BA-VCSEL was operated in quasi-cw mode with pulse widths of approximately 105 µs. The times denoted in the upper right corner of the images are the positions of the single-shot measurements after turn-on.

Fig. 9.
Fig. 9.

RF spectrum of the emitted intensity at different temporal position within a 100 µs pulse with amplitude of 145 mA amplitude: at 2 µs (black), at 50 µs (dark gray) and at 98 µs (light gray). The noise floor of the measurement setup is at -58 dBm

Metrics