Abstract

The cavity dispersion noncoaxiality (CDN) effects on broadband few-cycle pulse generation of a Kerr-lens mode-locked Ti:sapphire laser is investigated theoretically and experimentally. It is found that the influence of CDN is comparable with that of self-focusing and self-phase-modulation in the frequency-dependent mode size (FDMS) effects. Spectra extending from 680 nm to 1020 nm with pulse duration shorter than three optical cycles are favorably generated under the minimum CDN in the vicinity of the coaxial point of the sub-cavity.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Morgener, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, "Sub-two-cycle pulses from a Kerr-lens mode-locked Ti : Sapphire laser," Opt. Lett. 24, 411-413 (1999).
    [CrossRef]
  2. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, "Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti: Sapphire laser producing pulses in the two cycle regime," Opt. Lett. 24, 631-633 (1999).
    [CrossRef]
  3. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, "Generation of 5-fs pulses and octave-spanning spectra directly from a Tisapphire laser," Opt. Lett. 26, 373-375 (2001).
    [CrossRef]
  4. T. R. Schibli, O. Kuzucu, J. W. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, "Toward Single-Cycle Laser Systems," IEEE J. Sel. Top. Quantum Electron. 9, 990-1001 (2003).
    [CrossRef]
  5. Y. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, "Dispersion-managed mode locking," J. Opt. Soc. Am. B 16, 1999-2004 (1999).
    [CrossRef]
  6. S. T. Cundiff, W. H. Knox, E. P. Ippen, and H. A. Haus, "Frequency-dependent mode size in broadband Kerr-lens mode locking," Opt. Lett. 21, 662-664 (1996).
    [CrossRef] [PubMed]
  7. I. P. Christov, V. D. Stoev, M. M. Murnane, and H. C. Kapteyn, "Sub-10-fs operation of Kerr-lens mode-locked lasers," Opt. Lett. 21, 1493-1495 (1996).
    [CrossRef] [PubMed]
  8. M. Ramaswamy-Paye and J. G. Fujimoto, "Compact dispersion-compensating geometry for Kerr-lens mode-locked femtosecond lasers," Opt. Lett. 21, 1756-1758 (1994).
    [CrossRef]
  9. D. Kopt, G. J. Spühler, K. J. Weingarten, and U. Keller, "Mode-locked laser cavities with a single prism for dispersion compensation," Appl. Opt. 35, 912-915 (1996).
    [CrossRef]
  10. B. E. Bouma, M. Ramaswamy-Paye, and J. G. Fujimoto, "Compact resonator design for mode locked solid-state lasers," Appl. Phys. B 65, 213-220 (1997).
    [CrossRef]
  11. R. Paschotta, J. Aus der Au, and U. Keller, "Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities," J. Opt. Soc. Am. B 17, 646-651 (2000).
    [CrossRef]
  12. Y. Chen, X. Zheng, T. Lai, X. Xu, D. Mo, and W. Lin, "Resonators for self-mode-locking Tisapphire lasers without apertures," Opt. Lett. 21, 1469-1471 (1996).
    [CrossRef] [PubMed]
  13. R. Zhang, J. Ma, D. Pang, J. Sun, and Q. Wang, "Spatial chirp and angular dispersion of a laser crystal for a four-mirror cavity Kerr-lens mode-locked laser," Appl. Opt. 43, 2184-2191 (2004).
    [CrossRef] [PubMed]
  14. V. Magni, G. Cerullo, and S. D. Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through kerr media," Opt. Commun. 96, 348-355 (1993).
    [CrossRef]
  15. J. Herrmann, "Theory of Kerr-lens mode locking: role of self-focusing and radially varying gain," J. Opt. Soc. Am. B 11, 498-512 (1994).
    [CrossRef]
  16. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, G. Jung, T. Le, and A. Stingl, "Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 28, 905-907 (2003).
    [CrossRef] [PubMed]
  17. A. L. Lytle, E. Gershgoren, R. I. Tobey, M. M. Murnane, H. C. Kapteyn, and Dirk Müller, "Use of a simple cavity geometry for low and high repetition rate modelocked Ti:sapphire lasers," Opt. Express 12, 1409-1416 (2004).
    [CrossRef] [PubMed]
  18. M. S. Kirchner, T. M. Fortier, A. Bartels, and S. A. Diddams, "A low-threshold self-referenced Ti:Sapphire optical frequency comb," Opt. Express 14, 9531-9536 (2006).
    [CrossRef] [PubMed]

2006 (1)

2004 (2)

2003 (2)

2001 (1)

2000 (1)

1999 (3)

1997 (1)

B. E. Bouma, M. Ramaswamy-Paye, and J. G. Fujimoto, "Compact resonator design for mode locked solid-state lasers," Appl. Phys. B 65, 213-220 (1997).
[CrossRef]

1996 (4)

1994 (2)

1993 (1)

V. Magni, G. Cerullo, and S. D. Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through kerr media," Opt. Commun. 96, 348-355 (1993).
[CrossRef]

Ahnelt, P. K.

Angelow, G.

Anger, E. M.

Bartels, A.

Boiko, A.

Bouma, B. E.

B. E. Bouma, M. Ramaswamy-Paye, and J. G. Fujimoto, "Compact resonator design for mode locked solid-state lasers," Appl. Phys. B 65, 213-220 (1997).
[CrossRef]

Cerullo, G.

V. Magni, G. Cerullo, and S. D. Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through kerr media," Opt. Commun. 96, 348-355 (1993).
[CrossRef]

Chen, Y.

Cho, S. H.

Christov, I. P.

Cundiff, S. T.

Diddams, S. A.

Drexler, W.

Ell, R.

Fortier, T. M.

Fujimoto, J. G.

Gallmann, L.

Gershgoren, E.

Haus, H. A.

Hermann, B.

Herrmann, J.

Ippen, E. P.

Jung, G.

Kapteyn, H. C.

Kärtner, F. X.

Keller, U.

Kim, J. W.

T. R. Schibli, O. Kuzucu, J. W. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, "Toward Single-Cycle Laser Systems," IEEE J. Sel. Top. Quantum Electron. 9, 990-1001 (2003).
[CrossRef]

Kirchner, M. S.

Knox, W. H.

Kopt, D.

Kuzucu, O.

T. R. Schibli, O. Kuzucu, J. W. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, "Toward Single-Cycle Laser Systems," IEEE J. Sel. Top. Quantum Electron. 9, 990-1001 (2003).
[CrossRef]

Lai, T.

Le, T.

Lederer, M. J.

Lin, W.

Luther-Davies, B.

Lytle, A. L.

Ma, J.

Magni, V.

V. Magni, G. Cerullo, and S. D. Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through kerr media," Opt. Commun. 96, 348-355 (1993).
[CrossRef]

Matuschek, N.

Mo, D.

Morgener, U.

Morgner, U.

Morier-Genoud, F.

Murnane, M. M.

Pang, D.

Paschotta, R.

Považay, B.

Ramaswamy-Paye, M.

B. E. Bouma, M. Ramaswamy-Paye, and J. G. Fujimoto, "Compact resonator design for mode locked solid-state lasers," Appl. Phys. B 65, 213-220 (1997).
[CrossRef]

M. Ramaswamy-Paye and J. G. Fujimoto, "Compact dispersion-compensating geometry for Kerr-lens mode-locked femtosecond lasers," Opt. Lett. 21, 1756-1758 (1994).
[CrossRef]

Sattmann, H.

Scheuer, V.

Schibli, T. R.

T. R. Schibli, O. Kuzucu, J. W. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, "Toward Single-Cycle Laser Systems," IEEE J. Sel. Top. Quantum Electron. 9, 990-1001 (2003).
[CrossRef]

Schubert, C.

Silvestri, S. D.

V. Magni, G. Cerullo, and S. D. Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through kerr media," Opt. Commun. 96, 348-355 (1993).
[CrossRef]

Spühler, G. J.

Steinmeyer, G.

Stingl, A.

Stoev, V. D.

Sun, J.

Sutter, D. H.

Tempea, G.

Tobey, R. I.

Tschudi, T.

Unterhuber, A.

Wang, Q.

Weingarten, K. J.

Xu, X.

Yakovlev, V.

Zhang, R.

Zheng, X.

Appl. Opt. (2)

Appl. Phys. B (1)

B. E. Bouma, M. Ramaswamy-Paye, and J. G. Fujimoto, "Compact resonator design for mode locked solid-state lasers," Appl. Phys. B 65, 213-220 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. R. Schibli, O. Kuzucu, J. W. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, "Toward Single-Cycle Laser Systems," IEEE J. Sel. Top. Quantum Electron. 9, 990-1001 (2003).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

V. Magni, G. Cerullo, and S. D. Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through kerr media," Opt. Commun. 96, 348-355 (1993).
[CrossRef]

Opt. Express (2)

Opt. Lett. (8)

R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, "Generation of 5-fs pulses and octave-spanning spectra directly from a Tisapphire laser," Opt. Lett. 26, 373-375 (2001).
[CrossRef]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, G. Jung, T. Le, and A. Stingl, "Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 28, 905-907 (2003).
[CrossRef] [PubMed]

U. Morgener, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, "Sub-two-cycle pulses from a Kerr-lens mode-locked Ti : Sapphire laser," Opt. Lett. 24, 411-413 (1999).
[CrossRef]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, "Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti: Sapphire laser producing pulses in the two cycle regime," Opt. Lett. 24, 631-633 (1999).
[CrossRef]

S. T. Cundiff, W. H. Knox, E. P. Ippen, and H. A. Haus, "Frequency-dependent mode size in broadband Kerr-lens mode locking," Opt. Lett. 21, 662-664 (1996).
[CrossRef] [PubMed]

Y. Chen, X. Zheng, T. Lai, X. Xu, D. Mo, and W. Lin, "Resonators for self-mode-locking Tisapphire lasers without apertures," Opt. Lett. 21, 1469-1471 (1996).
[CrossRef] [PubMed]

I. P. Christov, V. D. Stoev, M. M. Murnane, and H. C. Kapteyn, "Sub-10-fs operation of Kerr-lens mode-locked lasers," Opt. Lett. 21, 1493-1495 (1996).
[CrossRef] [PubMed]

M. Ramaswamy-Paye and J. G. Fujimoto, "Compact dispersion-compensating geometry for Kerr-lens mode-locked femtosecond lasers," Opt. Lett. 21, 1756-1758 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Different overlap situations of wavelength ray λ1 and the central wavelength ray λ0 in the sub-cavity for the cases of (a) d 1’×d 2’>0 and (b) d 1’×d 2’<0.

Fig. 2.
Fig. 2.

Spectral dependence of a Gaussian beam size in the middle of the crystal. The solid curve denotes the case where CDN effects are neglected and the dashed curve is for the case with CDN effects considered.

Fig. 3.
Fig. 3.

(a). Theoretical curve of ξ min versus l 1+l 2 in the stable regions, the vertical dashed lines are the stability limits; (b) Theoretical curve of ξ (solid curve), SAM strength curves α 1 (dashed curve) at the coaxial point and α 2 (dashed-dotted curve) near the upper boundary of the HMS region versus l 1.

Fig. 4.
Fig. 4.

(a) and (b) are, respectively, the spectra of the measured pulses in the conditions without and with the minimization of CDN. (c) The dotted curve is the measured interferometric autocorrelation of the pulses, the solid curve is the reconstructed one with a sech2 envelop and pulse duration of 7.5 fs (FWHM).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S = 0 L d · d l = 0 L d 1 + l · δr · dl
ξ = { 1 2 · L 2 n 2 · l 1 l 2 l 1 + l 2 2 f + L c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . min ( l 1 , l 2 ) f max ( l 1 , l 2 ) 1 2 · L 2 n 2 · ( l 1 f ) 2 + ( l 2 f ) 2 ( l 1 + l 2 2 f + L c ) · l 1 + l 2 2 f . . . . . f > max ( l 1 , l 2 ) , f < min ( l 1 , l 2 )
ξ min = 1 4 · L 2 n 2 · L c L 12 2 f + L c 1

Metrics