Abstract

We demonstrate a chip-scale photonic system for the room-temperature detection of gas composition and pressure using a slotted silicon microring resonator. We measure shifts in the resonance wavelength due to the presence and pressure of acetylene gas and resolve differences in the refractive index as small as 10-4 in the near-IR. The observed sensitivity of this device (enhanced due to the slot-waveguide geometry) agrees with the expected value of 490 nm/refractive index unit.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nat. Photonics 1, 331 (2007).
    [CrossRef]
  2. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, "Slot-waveguide biochemical sensor," Opt. Lett. 32, 3080 (2007).
    [CrossRef] [PubMed]
  3. L. De Stefano, L. Moretti, I. Rendina, and A. M. Rossi, "Porous silicon microcavities for optical hydrocarbons detection," Sens. Actuators, A 104, 179 (2003).
    [CrossRef]
  4. B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854 (2004).
    [CrossRef]
  5. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783 (2007).
    [CrossRef] [PubMed]
  6. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857 (2007).
    [CrossRef] [PubMed]
  7. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
    [CrossRef] [PubMed]
  8. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall mode volumes in dielectric optical microcavities," Phys. Rev. Lett. 95, 143901 (2005).
    [CrossRef] [PubMed]
  9. F. Dell'Olio and V.M. Passaro, "Optical sensing by optimized silicon slot waveguides," Opt. Express 15, 4977 (2007).
    [CrossRef] [PubMed]
  10. V. R. Almeida, X. Qianfan, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209 (2004).
    [CrossRef] [PubMed]
  11. V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302 (2003).
    [CrossRef] [PubMed]
  12. W. C. Gardiner, Jr., "Refractivity of combustion gases," Combust. Flame 40, 213 (1981).
    [CrossRef]
  13. K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, "Accurate optical frequency atlas of the 1.5-?um bands of acetylene," J. Opt. Soc. Am. B 13, 2708 (1996).
    [CrossRef]
  14. P. Dubé, L.-S. Ma, J. Ye, P. Jungner, and J. L. Hall, "Thermally induced self-locking of an optical cavity by overtone absorption in acetylene gas," J. Opt. Soc. Am. B 13, 2041 (1996).
    [CrossRef]
  15. R. W. Boyd, Nonlinear Optics, 2nd ed., (Academic, San Diego CA, 2003).
  16. M. Borselli, T. Johnson, and O. Painter, "Beyond the rayleigh scattering limit in high-q silicon microdisks: Theory and experiment," Opt. Express 13, 1515 (2005).
    [CrossRef] [PubMed]
  17. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
    [CrossRef]

2007 (5)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783 (2007).
[CrossRef] [PubMed]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857 (2007).
[CrossRef] [PubMed]

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nat. Photonics 1, 331 (2007).
[CrossRef]

F. Dell'Olio and V.M. Passaro, "Optical sensing by optimized silicon slot waveguides," Opt. Express 15, 4977 (2007).
[CrossRef] [PubMed]

C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, "Slot-waveguide biochemical sensor," Opt. Lett. 32, 3080 (2007).
[CrossRef] [PubMed]

2005 (3)

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall mode volumes in dielectric optical microcavities," Phys. Rev. Lett. 95, 143901 (2005).
[CrossRef] [PubMed]

M. Borselli, T. Johnson, and O. Painter, "Beyond the rayleigh scattering limit in high-q silicon microdisks: Theory and experiment," Opt. Express 13, 1515 (2005).
[CrossRef] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
[CrossRef]

2004 (3)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef] [PubMed]

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854 (2004).
[CrossRef]

V. R. Almeida, X. Qianfan, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209 (2004).
[CrossRef] [PubMed]

2003 (2)

V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302 (2003).
[CrossRef] [PubMed]

L. De Stefano, L. Moretti, I. Rendina, and A. M. Rossi, "Porous silicon microcavities for optical hydrocarbons detection," Sens. Actuators, A 104, 179 (2003).
[CrossRef]

1996 (2)

1981 (1)

W. C. Gardiner, Jr., "Refractivity of combustion gases," Combust. Flame 40, 213 (1981).
[CrossRef]

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
[CrossRef]

Almeida, V.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854 (2004).
[CrossRef]

Almeida, V. R.

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783 (2007).
[CrossRef] [PubMed]

Asano, T.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
[CrossRef]

Awaji, Y.

Barrios, C. A.

Borselli, M.

Casquel, R.

Chen, L.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall mode volumes in dielectric optical microcavities," Phys. Rev. Lett. 95, 143901 (2005).
[CrossRef] [PubMed]

Conkey, D. B.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nat. Photonics 1, 331 (2007).
[CrossRef]

de Labachelerie, M.

De Stefano, L.

L. De Stefano, L. Moretti, I. Rendina, and A. M. Rossi, "Porous silicon microcavities for optical hydrocarbons detection," Sens. Actuators, A 104, 179 (2003).
[CrossRef]

Dell'Olio, F.

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef] [PubMed]

Dubé, P.

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef] [PubMed]

Englund, D.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857 (2007).
[CrossRef] [PubMed]

Faraon, A.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857 (2007).
[CrossRef] [PubMed]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783 (2007).
[CrossRef] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783 (2007).
[CrossRef] [PubMed]

Fushman, I.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857 (2007).
[CrossRef] [PubMed]

Gardiner, W. C.

W. C. Gardiner, Jr., "Refractivity of combustion gases," Combust. Flame 40, 213 (1981).
[CrossRef]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef] [PubMed]

Griol, A.

Gylfason, K. B.

Hall, J. L.

Hawkins, A. R.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nat. Photonics 1, 331 (2007).
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef] [PubMed]

Holgado, M.

Johnson, T.

Jungner, P.

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef] [PubMed]

Kourogi, M.

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783 (2007).
[CrossRef] [PubMed]

Lipson, M.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall mode volumes in dielectric optical microcavities," Phys. Rev. Lett. 95, 143901 (2005).
[CrossRef] [PubMed]

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854 (2004).
[CrossRef]

V. R. Almeida, X. Qianfan, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209 (2004).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302 (2003).
[CrossRef] [PubMed]

Ma, L.-S.

Manolatou, C.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall mode volumes in dielectric optical microcavities," Phys. Rev. Lett. 95, 143901 (2005).
[CrossRef] [PubMed]

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854 (2004).
[CrossRef]

Moretti, L.

L. De Stefano, L. Moretti, I. Rendina, and A. M. Rossi, "Porous silicon microcavities for optical hydrocarbons detection," Sens. Actuators, A 104, 179 (2003).
[CrossRef]

Nakagawa, K.

Noda, S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
[CrossRef]

Painter, O.

Panepucci, R. R.

Passaro, V.M.

Petroff, P.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857 (2007).
[CrossRef] [PubMed]

Preble, S.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854 (2004).
[CrossRef]

Qianfan, X.

Rendina, I.

L. De Stefano, L. Moretti, I. Rendina, and A. M. Rossi, "Porous silicon microcavities for optical hydrocarbons detection," Sens. Actuators, A 104, 179 (2003).
[CrossRef]

Robinson, J. T.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall mode volumes in dielectric optical microcavities," Phys. Rev. Lett. 95, 143901 (2005).
[CrossRef] [PubMed]

Rossi, A. M.

L. De Stefano, L. Moretti, I. Rendina, and A. M. Rossi, "Porous silicon microcavities for optical hydrocarbons detection," Sens. Actuators, A 104, 179 (2003).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef] [PubMed]

Sánchez, B.

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef] [PubMed]

Schmidt, B.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854 (2004).
[CrossRef]

Schmidt, H.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nat. Photonics 1, 331 (2007).
[CrossRef]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef] [PubMed]

Sohlström, H.

Song, B.-S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
[CrossRef]

Stoltz, N.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857 (2007).
[CrossRef] [PubMed]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783 (2007).
[CrossRef] [PubMed]

Vuckovic, J.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857 (2007).
[CrossRef] [PubMed]

Wu, B.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nat. Photonics 1, 331 (2007).
[CrossRef]

Yang, W.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nat. Photonics 1, 331 (2007).
[CrossRef]

Ye, J.

Yin, D.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nat. Photonics 1, 331 (2007).
[CrossRef]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854 (2004).
[CrossRef]

Combust. Flame (1)

W. C. Gardiner, Jr., "Refractivity of combustion gases," Combust. Flame 40, 213 (1981).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Mater. (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
[CrossRef]

Nat. Photonics (1)

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nat. Photonics 1, 331 (2007).
[CrossRef]

Nature (2)

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857 (2007).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall mode volumes in dielectric optical microcavities," Phys. Rev. Lett. 95, 143901 (2005).
[CrossRef] [PubMed]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783 (2007).
[CrossRef] [PubMed]

Sens. Actuators, A (1)

L. De Stefano, L. Moretti, I. Rendina, and A. M. Rossi, "Porous silicon microcavities for optical hydrocarbons detection," Sens. Actuators, A 104, 179 (2003).
[CrossRef]

Other (1)

R. W. Boyd, Nonlinear Optics, 2nd ed., (Academic, San Diego CA, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) SEM image of a silicon slotted microring resonator like the one used in our experiment. Inset shows the slot waveguide in the ring. Red arrows show direction of light propagation along the bus waveguide (b) cross sectional SEM image of a slot waveguide like the one in (a). (c) calculated mode profile for the major E-field component of the fundamental quasi-TE mode for the waveguide shown in (b). The high concentration of electric field in the gas region makes the resonator more sensitive to changes in refractive index of the gas.

Fig. 2.
Fig. 2.

(a): Photograph of the gas cell affixed to the silicon photonic chip. Dotted line shows the path of the light through the waveguide and the circle denotes the approximate location of the microring. (b) schematic of the experimental setup which was used to measure the resonant wavelength of the microring under different gaseous environments.

Fig. 3.
Fig. 3.

(a) Transmission spectra for the microring resonator in the presence of air (solid) and acetylene gas (dotted) at room temperature and atmospheric pressure pressure. The shift in resonance is due to the difference in refractive index between air and acetylene gas. (b): Change in resonant wavelength as a function of gas pressure for acetylene. Solid and open shapes represent the average of three measurements for increasing and decreasing pressure respectively. Error bars represent the standard deviation of the three measurements for each data point. Dashed line shows the theoretical resonance shift based on the properties of the resonator. The slope of 490nm/RIU determines the sensitivity of the device.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ 0 ( Γ n eff ) Δ n gas ,
Γ n gas gas E 2 d A Z 0 ( E × H * ) z ̂ d A ,
Δ n = K GD RT Δ P ,

Metrics