Abstract

Bend loss of the first three modes of leakage channel fibers with various designs are studied using finite element method. It is found that very low bend loss at small bend radius can be achieved with large d/Λ. It is also found that best differential mode loss is achieved at large bend radius. It is further found that 2nd order mode loss becomes 9.1 times of fundamental mode loss at small bend radius for the bend orientation where the bending plane crosses centers of two holes and independent of d/Λ. Bend loss dependence of bend orientations are also studied. Excellent agreement between experiment and simulation is obtained.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, "Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers," Opt. Lett. 30, 2855-2857 (2005).
    [CrossRef] [PubMed]
  2. L. Dong, X. Peng, and J. Li, "Leakage channel optical fibers with large effective area," J. Opt. Soc. Am. B 24, 1689-1697 (2006).
    [CrossRef]
  3. L. Dong, G. Berkey, P. Chan, and D. L. Weidman, "Resonant ring fiber filters," J. Lightwave Technol. 18, 1018-1023 (2000).
    [CrossRef]
  4. J. M. Fini, R. T. Bise, M. F. Yan, A. D. Yablon, and P. W. Wisk, "Distributed fiber filter based on index-matched coupling between core and cladding," Opt. Express 13, 10022-10033 (2005).
    [CrossRef] [PubMed]
  5. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, and F. Salin, "High-power rod-type photonic crystal fiber laser," Opt. Express 13, 1055-1058 (2005).
    [CrossRef] [PubMed]
  6. L. Dong, J. Li, and X. Peng, "Bend resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective area up to 3160?m2," Opt. Express 14, 11512-11519 (2006).
    [CrossRef] [PubMed]
  7. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Single-mode operation of coiled multimode fiber amplifier," Opt. Lett. 25, 442-444 (2000).
    [CrossRef]
  8. J. Fini, "Bend-resistant design of conventional and microstructured fibers with very large mode area," Opt. Express 14, 69-81 (2006).
    [CrossRef] [PubMed]
  9. N. N. Feng, G. R. Zhou, C. Xu, and W. P. Huang, "Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers," J. Lightwave Technol. 20, 1976-1980 (2002).
    [CrossRef]
  10. Y. Tsuchida, K. Saitoh, and M. Koshiba, "Design of single-mode holey fibers with large-mode-area and low bending losses: the significance of ring-core region," Opt. Express 15, 1797-1803 (2006).

2006 (4)

2005 (3)

2002 (1)

2000 (2)

Berkey, G.

Bise, R. T.

Chan, P.

Deguil-Robin, N.

Dong, L.

Feng, N. N.

Fini, J.

Fini, J. M.

Goldberg, L.

Huang, W. P.

Kliner, D. A. V.

Koplow, J. P.

Koshiba, M.

Y. Tsuchida, K. Saitoh, and M. Koshiba, "Design of single-mode holey fibers with large-mode-area and low bending losses: the significance of ring-core region," Opt. Express 15, 1797-1803 (2006).

Li, J.

Limpert, J.

Manek-Hönninger, I.

McLaughlin, J. M.

Peng, X.

Saitoh, K.

Y. Tsuchida, K. Saitoh, and M. Koshiba, "Design of single-mode holey fibers with large-mode-area and low bending losses: the significance of ring-core region," Opt. Express 15, 1797-1803 (2006).

Salin, F.

Tsuchida, Y.

Y. Tsuchida, K. Saitoh, and M. Koshiba, "Design of single-mode holey fibers with large-mode-area and low bending losses: the significance of ring-core region," Opt. Express 15, 1797-1803 (2006).

Weidman, D. L.

Wisk, P. W.

Wong, W. S.

Xu, C.

Yablon, A. D.

Yan, M. F.

Zhou, G. R.

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Geometry used in the analysis. Note that only half of the geometry is sufficient for the analysis due to the mirror symmetry. Dimensional unit is in meters.

Fig. 2.
Fig. 2.

First three modes in a LCF for (a) AA and (b) BB bend.

Fig. 3.
Fig. 3.

Bend loss of fundamental mode and 2nd mode for various d/Λ under AA and BB bend.

Fig. 4.
Fig. 4.

2nd mode loss vs. fundamental mode loss for various d/Λ.

Fig. 5.
Fig. 5.

2nd mode loss vs. fundamental mode loss for LCFs with 30µm and 50µm core diameter and d/Λ=0.7.

Fig. 6.
Fig. 6.

Measured and simulated bend loss for AA and BB orientations for a fabricated fiber. See text for details.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = b n pml 2 ( x L x 2 L pml ) 2

Metrics