Abstract

A dual-core photonic bandgap fiber (PBGF) is demonstrated by infusing a high-index liquid into a dual-core air-silica photonic crystal fiber (PCF). Extremal couplings have been experimentally observed. The temperature tunable characteristics of the dual-core PBGF’s bandgap guiding and dual-core coupling are experimentally and numerically investigated. When we rise temperature, the dual-core PBGFs’ bandgaps have been changed: compression of bandwidth, blue-shift and depression of the guiding band. Especially, the dual-core coupling is temperature tunable because of the tunability of the infusion liquid’s index. We find that the rise of temperature increases the coupling length which results in the blue-shift of the resonant peak wavelengths with a speed of 1.9nm/°C, for a 20mm dual-core PBGF.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  2. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
    [CrossRef] [PubMed]
  3. K. Saitoh, Y. Sato, and M. Koshiba, "Coupling characteristics of dual-core photonic crystal fiber couplers," Opt. Express 11, 3188-3195 (2003).
    [CrossRef] [PubMed]
  4. N. J. Florous, K. Saitoh, T. Murao, M. Koshiba, and M. Skorobogatiy, "Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters," Opt. Express 14, 4861-4872 (2006).
    [CrossRef] [PubMed]
  5. J. Lægsgaard, "Directional coupling in twin-core photonic bandgap fibers," Opt. Lett. 30, 3281-3283 (2005).
  6. Z. Wang, G. Y. Kai, Y. G. Liu, J. F. Liu, C. S. Zhang, T. T. Sun, C. Wang, W. G. Zhang, S. Z. Yuan, and X. Y. Dong, "Coupling and decoupling of dual-core photonic bandgap fibers," Opt. Lett. 30, 2542-2544 (2005).
    [CrossRef] [PubMed]
  7. Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, J. Du, "Coupling in dual-core photonic bandgap fibers: theory and experiment," Opt. Express. 15, 4795-4803 (2007).
    [CrossRef] [PubMed]
  8. A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999).
    [CrossRef]
  9. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000).
    [CrossRef]
  10. R. T. Bise, R. S. Windeler, K. S. Kranz, C.  Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communications Conference 2002, 466- 468, 17-22 Mar 2002.
  11. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003).
    [CrossRef] [PubMed]
  12. F. Du, Y. Lu, and S. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
    [CrossRef]
  13. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
    [CrossRef]
  14. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li and S. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express. 12, 5857-5871 (2004).
    [CrossRef] [PubMed]
  15. P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006).
    [CrossRef] [PubMed]
  16. P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006).
    [CrossRef] [PubMed]
  17. T. T. Alkeskjold and A. Bjarklev, "Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter," Opt. Lett. 32, 1707-1709 (2007)
    [CrossRef] [PubMed]
  18. T. P. White, R. C. McPhedran, C. M. de Sterke, N. M. Litchinitser and B. J. Eggleton, "Resonance and scattering in microstructured optical fiber," Opt. Lett. 27, 1977-1979 (2002).
    [CrossRef]
  19. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002).
    [CrossRef]
  20. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  21. S. G. Johnson and J. D. Joannopoulos, TheMIT  Photonic-Bands Package home page http://ab-initio.mit.edu/mpb/.

2007

Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, J. Du, "Coupling in dual-core photonic bandgap fibers: theory and experiment," Opt. Express. 15, 4795-4803 (2007).
[CrossRef] [PubMed]

T. T. Alkeskjold and A. Bjarklev, "Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter," Opt. Lett. 32, 1707-1709 (2007)
[CrossRef] [PubMed]

2006

2005

J. Lægsgaard, "Directional coupling in twin-core photonic bandgap fibers," Opt. Lett. 30, 3281-3283 (2005).

Z. Wang, G. Y. Kai, Y. G. Liu, J. F. Liu, C. S. Zhang, T. T. Sun, C. Wang, W. G. Zhang, S. Z. Yuan, and X. Y. Dong, "Coupling and decoupling of dual-core photonic bandgap fibers," Opt. Lett. 30, 2542-2544 (2005).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

2004

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li and S. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express. 12, 5857-5871 (2004).
[CrossRef] [PubMed]

F. Du, Y. Lu, and S. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

2003

2002

2001

2000

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000).
[CrossRef]

1999

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

1997

Abeeluck, A. K.

Abramov, A. A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

Alkeskjold, T. T.

T. T. Alkeskjold and A. Bjarklev, "Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter," Opt. Lett. 32, 1707-1709 (2007)
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li and S. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express. 12, 5857-5871 (2004).
[CrossRef] [PubMed]

Anawati, A.

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li and S. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express. 12, 5857-5871 (2004).
[CrossRef] [PubMed]

Birks, T. A.

Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, J. Du, "Coupling in dual-core photonic bandgap fibers: theory and experiment," Opt. Express. 15, 4795-4803 (2007).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

Bjarklev, A.

T. T. Alkeskjold and A. Bjarklev, "Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter," Opt. Lett. 32, 1707-1709 (2007)
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li and S. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express. 12, 5857-5871 (2004).
[CrossRef] [PubMed]

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003).
[CrossRef] [PubMed]

Broeng, J.

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li and S. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express. 12, 5857-5871 (2004).
[CrossRef] [PubMed]

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003).
[CrossRef] [PubMed]

Burdge, G. L.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000).
[CrossRef]

de Sterke, C. M.

Dong, X. Y.

Du, F.

F. Du, Y. Lu, and S. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

Du, J.

Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, J. Du, "Coupling in dual-core photonic bandgap fibers: theory and experiment," Opt. Express. 15, 4795-4803 (2007).
[CrossRef] [PubMed]

Eggleton, B. J.

Engan, H. E.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Espindola, R. P.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

Florous, N. J.

Haakestad, M. W.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Hale, A.

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000).
[CrossRef]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

Headley, C.

Hermann, D.

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li and S. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express. 12, 5857-5871 (2004).
[CrossRef] [PubMed]

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Johnson, S. G.

Kai, G. Y.

Kerbage, C.

Knight, J. C.

Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, J. Du, "Coupling in dual-core photonic bandgap fibers: theory and experiment," Opt. Express. 15, 4795-4803 (2007).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

Koshiba, M.

Kuhlmey, B. T.

Lægsgaard, J.

J. Lægsgaard, "Directional coupling in twin-core photonic bandgap fibers," Opt. Lett. 30, 3281-3283 (2005).

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li and S. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express. 12, 5857-5871 (2004).
[CrossRef] [PubMed]

Larsen, T.

Li, J.

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li and S. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express. 12, 5857-5871 (2004).
[CrossRef] [PubMed]

Litchinitser, N. M.

Liu, J. F.

Liu, Y.

Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, J. Du, "Coupling in dual-core photonic bandgap fibers: theory and experiment," Opt. Express. 15, 4795-4803 (2007).
[CrossRef] [PubMed]

Liu, Y. G.

Lu, Y.

F. Du, Y. Lu, and S. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

Mägi, E. C.

McPhedran, R. C.

Moore, E. D.

Murao, T.

Nielsen, M. D.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Riishede, J.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Rogers, J. A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

Russell, P. St. J.

Saitoh, K.

Sato, Y.

Scolari, L.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Skorobogatiy, M.

Steinvurzel, P.

Strasser, T. A.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000).
[CrossRef]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

Sun, T. T.

Taru, T.

Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, J. Du, "Coupling in dual-core photonic bandgap fibers: theory and experiment," Opt. Express. 15, 4795-4803 (2007).
[CrossRef] [PubMed]

Wang, C.

Wang, Z.

Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, J. Du, "Coupling in dual-core photonic bandgap fibers: theory and experiment," Opt. Express. 15, 4795-4803 (2007).
[CrossRef] [PubMed]

Z. Wang, G. Y. Kai, Y. G. Liu, J. F. Liu, C. S. Zhang, T. T. Sun, C. Wang, W. G. Zhang, S. Z. Yuan, and X. Y. Dong, "Coupling and decoupling of dual-core photonic bandgap fibers," Opt. Lett. 30, 2542-2544 (2005).
[CrossRef] [PubMed]

Westbrook, P. S.

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000).
[CrossRef]

White, T. P.

Windeler, R. S.

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000).
[CrossRef]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

Wu, S.

F. Du, Y. Lu, and S. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li and S. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express. 12, 5857-5871 (2004).
[CrossRef] [PubMed]

Yuan, S. Z.

Zhang, C. S.

Zhang, W. G.

Appl. Phys. Lett.

F. Du, Y. Lu, and S. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000).
[CrossRef]

Opt. Express

Opt. Express.

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li and S. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express. 12, 5857-5871 (2004).
[CrossRef] [PubMed]

Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, J. Du, "Coupling in dual-core photonic bandgap fibers: theory and experiment," Opt. Express. 15, 4795-4803 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Other

S. G. Johnson and J. D. Joannopoulos, TheMIT  Photonic-Bands Package home page http://ab-initio.mit.edu/mpb/.

R. T. Bise, R. S. Windeler, K. S. Kranz, C.  Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communications Conference 2002, 466- 468, 17-22 Mar 2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a). Microscope image of the dual-core PCF’s section structure. (b): the sectional image of the dual-core PBGF with the infusion liquid. (c): the lateral image of the dual-core PBGF when launched with a butt-coupled super-continuum light source (the bright line).

Fig. 2.
Fig. 2.

Transmission spectrum of the dual core PBGF with the infusion liquid. Five bandgaps are observed no matter which core the super-continuum light source is launched into. These 5 bandgaps respectively correspond to gaps between band 12 and band 13 (Bandgap-1), between band 20 and band 21 (Bandgap-2), between band 24 and band 25 (Bandgap-3), between band 34 and band 35 (Bandgap-4), and between band 46 and band 47 (Bandgap-5). The transmission spectra are experimental results. The other lines are numerical results calculated by PWEM and FEM. Fiber length is about 20mm.

Fig. 3.
Fig. 3.

(a). the transmission spectra of the dual-core PBGF in Bandgap-1. (b): the normalized transmission. Fiber length is about 60mm.

Fig. 4
Fig. 4

The rise of temperature changes the bandgap guiding of the dual-core PBGF. The transmission spectra are experimental results. The other lines are numerical results calculated by PWEM.

Fig. 5.
Fig. 5.

Numerical results for the temperature tuning of the dual-core PBGF’s coupling length.

Fig. 6.
Fig. 6.

The rise of temperature changes the transmission spectrum and results in the blue-shift of the peak wavelength.

Fig. 7.
Fig. 7.

Normalized transmission at wavelength of 1310nm in Core 1 and Core 2, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P = P 0 cos 2 ( π * L 0 2 L c )

Metrics