Abstract

We present the results of a comprehensive analysis optimizing the performance of DPSK systems with increased FSR and narrow optical filtering, establishing improved chromatic dispersion tolerance of NRZ-DPSK by 20%, RZ-DPSK by 71% and CSRZ-DPSK by 74% approximately. Transmitting a 40Gb/s signals on a spectrally efficient 50GHz DWDM grid still exhibit improvements of 7% for NRZ-DPSK, 37% for RZ-DPSK and 22% for CSRZ-DPSK, relative to a typical DPSK receiver. The optimized delay and optical filtering scale with the amount of chromatic dispersion. We also demonstrate the impact of limited transmitter bandwidth on optimal optical filtering and bit delay parameters.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck and P. J. Winzer, "Optical phase-shift-keyed transmission," J. Lightwave Technol. 23, 115-130 (2005).
    [CrossRef]
  2. E. Golovchenko, L. Rahman, B. Bakhshi, D. Kovsh, F. Idrovo, and S. Abbott, "Field Deployment of WDM 10 Gb/s Capacity over 10,757 km of Reconfigured Portion of SAm-1 Cable System," in Optical Fiber Conference (OFC 2007)(Anaheim, CA, 2007), p. PDP27.
  3. G. Bosco and P. Poggiolini, "The impact of receiver imperfections on the Performance of optical direct-Detection DPSK," J. Lightwave Technol. 23, 842-848 (2005).
    [CrossRef]
  4. P. J. Winzer and H. Kim, "Degradations in balanced DPSK receivers," IEEE Photon. Technol. Lett. 15, 1282-1284 (2003).
    [CrossRef]
  5. Y. K. Lize, M. Faucher, É. Jarry, P. Ouellette, É. Villeneuve, A. Wetter, and F. Séguin, "Phase-Tunable Low-Loss, S-, C-, and L-band DPSK and DQPSK Demodulator," IEEE Photon. Technol. Lett. 19 (2007).
    [CrossRef]
  6. Y. K. Lize, L. Christen, X. Wu, J.-Y. Yang, S. Nuccio, T. Wu, A. E. Willner, and R. Kashyap, "Free spectral range optimization of return-to-zero differential phase shift keyed demodulation in the presence of chromatic dispersion," Opt. Express 15, 6817-6822 (2007).
    [CrossRef] [PubMed]
  7. C. Malouin, J. Bennike, and T. Schmidt, "DPSK Receiver Design - Optical Filtering Considerations," in OFCNFOEC 2007. 2007 Optical Fiber Communication Conference and National Fiber Optic Engineers Conference(Optical Society of America, Anaheim, CA, 2007), p. 3.
  8. B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, "Partial DPSK with excellent filter tolerance and OSNR sensitivity," Electron. Lett. 42, 1363-1365 (2006).
    [CrossRef]
  9. Y. K. Lize, X. Wu, L. Christen, M. Faucher, and A. E. Willner, "Free Spectral Range and Optical Filtering Optimization in NRZ-, RZ- and CSRZ-DPSK Demodulation," in IEEE Lasers and Electro-Optics Society (LEOS) Annual Meeting(Orlando, Florida, 2007).
    [CrossRef]
  10. J. Wang and J. M. Kahn, "Impact of chromatic and polarization-mode dispersions on DPSK systems using interferometric demodulation and direct detection," J. Lightwave Technol. 22, 362-371 (2004).
    [CrossRef]
  11. A. Agarwal, S. Chandrasekhar, and P. J. Winzer, "Experimental study of photocurrent imbalance in a 42.7-Gb/s DPSK receiver under strong optical filtering," in 2005 Optical Fiber Communications Conference Technical Digest (IEEE, Anaheim, CA, 2005), p. 3 Vol. 6.
  12. P. J. Winzer and R. J. Essiambre, "Advanced modulation formats for high-capacity optical transport networks," J. Lightwave Technol. 24, 4711-4728 (2006).
    [CrossRef]
  13. B. Slater, S. Boscolo, T. Broderick, S. K. Turitsyn, R. Freund, L. Molle, C. Caspar, J. Schwartz, and S. Barnes, "Performance analysis of 20Gb/s RZ-DPSK non-slope matched transoceanic submarine links, " Opt. Express 15, 10999-11007 (2007).
    [CrossRef] [PubMed]

2007 (3)

2006 (2)

P. J. Winzer and R. J. Essiambre, "Advanced modulation formats for high-capacity optical transport networks," J. Lightwave Technol. 24, 4711-4728 (2006).
[CrossRef]

B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, "Partial DPSK with excellent filter tolerance and OSNR sensitivity," Electron. Lett. 42, 1363-1365 (2006).
[CrossRef]

2005 (2)

2004 (1)

2003 (1)

P. J. Winzer and H. Kim, "Degradations in balanced DPSK receivers," IEEE Photon. Technol. Lett. 15, 1282-1284 (2003).
[CrossRef]

Barnes, S.

Bosco, G.

Boscolo, S.

Broderick, T.

Caspar, C.

Christen, L.

Essiambre, R. J.

Faucher, M.

Y. K. Lize, M. Faucher, É. Jarry, P. Ouellette, É. Villeneuve, A. Wetter, and F. Séguin, "Phase-Tunable Low-Loss, S-, C-, and L-band DPSK and DQPSK Demodulator," IEEE Photon. Technol. Lett. 19 (2007).
[CrossRef]

Freund, R.

Gnauck, A. H.

Jarry, É.

Y. K. Lize, M. Faucher, É. Jarry, P. Ouellette, É. Villeneuve, A. Wetter, and F. Séguin, "Phase-Tunable Low-Loss, S-, C-, and L-band DPSK and DQPSK Demodulator," IEEE Photon. Technol. Lett. 19 (2007).
[CrossRef]

Kahn, J. M.

Kashyap, R.

Kim, H.

P. J. Winzer and H. Kim, "Degradations in balanced DPSK receivers," IEEE Photon. Technol. Lett. 15, 1282-1284 (2003).
[CrossRef]

Liu, F.

B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, "Partial DPSK with excellent filter tolerance and OSNR sensitivity," Electron. Lett. 42, 1363-1365 (2006).
[CrossRef]

Lize, Y. K.

Y. K. Lize, M. Faucher, É. Jarry, P. Ouellette, É. Villeneuve, A. Wetter, and F. Séguin, "Phase-Tunable Low-Loss, S-, C-, and L-band DPSK and DQPSK Demodulator," IEEE Photon. Technol. Lett. 19 (2007).
[CrossRef]

Y. K. Lize, L. Christen, X. Wu, J.-Y. Yang, S. Nuccio, T. Wu, A. E. Willner, and R. Kashyap, "Free spectral range optimization of return-to-zero differential phase shift keyed demodulation in the presence of chromatic dispersion," Opt. Express 15, 6817-6822 (2007).
[CrossRef] [PubMed]

Mamyshev, P.

B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, "Partial DPSK with excellent filter tolerance and OSNR sensitivity," Electron. Lett. 42, 1363-1365 (2006).
[CrossRef]

Mikkelsen, B.

B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, "Partial DPSK with excellent filter tolerance and OSNR sensitivity," Electron. Lett. 42, 1363-1365 (2006).
[CrossRef]

Molle, L.

Nuccio, S.

Ouellette, P.

Y. K. Lize, M. Faucher, É. Jarry, P. Ouellette, É. Villeneuve, A. Wetter, and F. Séguin, "Phase-Tunable Low-Loss, S-, C-, and L-band DPSK and DQPSK Demodulator," IEEE Photon. Technol. Lett. 19 (2007).
[CrossRef]

Poggiolini, P.

Rasmussen, C.

B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, "Partial DPSK with excellent filter tolerance and OSNR sensitivity," Electron. Lett. 42, 1363-1365 (2006).
[CrossRef]

Schwartz, J.

Séguin, F.

Y. K. Lize, M. Faucher, É. Jarry, P. Ouellette, É. Villeneuve, A. Wetter, and F. Séguin, "Phase-Tunable Low-Loss, S-, C-, and L-band DPSK and DQPSK Demodulator," IEEE Photon. Technol. Lett. 19 (2007).
[CrossRef]

Slater, B.

Turitsyn, S. K.

Villeneuve, É.

Y. K. Lize, M. Faucher, É. Jarry, P. Ouellette, É. Villeneuve, A. Wetter, and F. Séguin, "Phase-Tunable Low-Loss, S-, C-, and L-band DPSK and DQPSK Demodulator," IEEE Photon. Technol. Lett. 19 (2007).
[CrossRef]

Wang, J.

Wetter, A.

Y. K. Lize, M. Faucher, É. Jarry, P. Ouellette, É. Villeneuve, A. Wetter, and F. Séguin, "Phase-Tunable Low-Loss, S-, C-, and L-band DPSK and DQPSK Demodulator," IEEE Photon. Technol. Lett. 19 (2007).
[CrossRef]

Willner, A. E.

Winzer, P. J.

Wu, T.

Wu, X.

Yang, J.-Y.

Electron. Lett. (1)

B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, "Partial DPSK with excellent filter tolerance and OSNR sensitivity," Electron. Lett. 42, 1363-1365 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. J. Winzer and H. Kim, "Degradations in balanced DPSK receivers," IEEE Photon. Technol. Lett. 15, 1282-1284 (2003).
[CrossRef]

Y. K. Lize, M. Faucher, É. Jarry, P. Ouellette, É. Villeneuve, A. Wetter, and F. Séguin, "Phase-Tunable Low-Loss, S-, C-, and L-band DPSK and DQPSK Demodulator," IEEE Photon. Technol. Lett. 19 (2007).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (2)

Other (4)

C. Malouin, J. Bennike, and T. Schmidt, "DPSK Receiver Design - Optical Filtering Considerations," in OFCNFOEC 2007. 2007 Optical Fiber Communication Conference and National Fiber Optic Engineers Conference(Optical Society of America, Anaheim, CA, 2007), p. 3.

E. Golovchenko, L. Rahman, B. Bakhshi, D. Kovsh, F. Idrovo, and S. Abbott, "Field Deployment of WDM 10 Gb/s Capacity over 10,757 km of Reconfigured Portion of SAm-1 Cable System," in Optical Fiber Conference (OFC 2007)(Anaheim, CA, 2007), p. PDP27.

Y. K. Lize, X. Wu, L. Christen, M. Faucher, and A. E. Willner, "Free Spectral Range and Optical Filtering Optimization in NRZ-, RZ- and CSRZ-DPSK Demodulation," in IEEE Lasers and Electro-Optics Society (LEOS) Annual Meeting(Orlando, Florida, 2007).
[CrossRef]

A. Agarwal, S. Chandrasekhar, and P. J. Winzer, "Experimental study of photocurrent imbalance in a 42.7-Gb/s DPSK receiver under strong optical filtering," in 2005 Optical Fiber Communications Conference Technical Digest (IEEE, Anaheim, CA, 2005), p. 3 Vol. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

DPSK spectrum with overlayed transfer functions for optical filtering and delay-line interferometer. Free-spectral-range larger than the bitrate and tighter optical filtering puts a greater emphasis on the optical duobinary (ODB) port (constructive) rather than the alternate-mark-inversion port (destructive).

Fig. 2.
Fig. 2.

RZ-DPSK Q-factor versus free spectral range and optical filtering bandwidth for CD index of a) 0, b) 54, c) 110 and d) 218×103(Gb/s)2 ps/nm.

Fig. 3.
Fig. 3.

Chromatic dispersion tolerance improvement using FSR and optical filtering optimized for best back-to-back performance versus using optimized parameters. Using channel spacing of 1.25R (50Ghz for 40G signal) with optimized parameters yields better results than a single non-optimized channel.

Fig. 4.
Fig. 4.

NRZ-DPSK Q-factor versus free spectral range and optical filtering bandwidth for CD index of a) 0, b) 54, c) 110 and d) 218×103(Gb/s)2 ps/nm.

Fig. 5.
Fig. 5.

CSRZ-DPSK Q-factor versus free spectral range and optical filtering bandwidth for CD index of a) 0, b) 54, c) 110 and d) 218×103(Gb/s)2 ps/nm.

Fig. 6.
Fig. 6.

Optimized values of optical filtering (OF) and free spectral range (FSR) normalized over bitrate for RZ-, NRZ-and CSRZ- DPSK optimized Q factor (with both OF and FSR are optimized simultaneously). But choosing OF and FSR parameters optimized for a specific amount of CD yields only a small penalty which effectively flattens the curve of penalty versus CD which can be very beneficial in a DPSK system.

Fig. 7.
Fig. 7.

Effect of modulator bandwidth on FSR and OF optimization in back to back detection for a) RZ- b) NRZ, and c) CSRZ- for 0.75R (left) and 0.5R(right) modulator bandwidth.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H ± ( f ) = [ exp ( j 2 π f FSR ) ± 1 ] 2
H + ( f ) 2 = cos 2 ( π f FSR ) 4
H _ ( f ) 2 = sin 2 ( π f FSR ) 4

Metrics