Abstract

Subwavelength imaging can be obtained with alternately layered metallodielectric films structure, even when the permittivity of metal and dielectric are not matched. This occurs as the effective transversal permittivity tends to be zero or the vertical one approaches infinity, depending on the permittivity value of the utilized dielectric and metal material. Evanescent waves can be amplified through the structure, but not in a manner of fully compensating the exponentially decaying property in dielectric. Numerical illustration of subwavelength imaging is presented for variant configuration of anisotropic permittivity with finite layer number of metallodielectric films.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  2. V. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  3. N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
    [CrossRef]
  4. P. G. Kik, S. A. Maier, and H. A. Atwater, "Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources," Phys. Rev. B 69, 045418 (2004).
    [CrossRef]
  5. V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-1-75.
    [CrossRef] [PubMed]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  7. D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127 (2005).
    [CrossRef] [PubMed]
  8. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).
  9. Z. Jacob, L. V. Alekseyev, E. Narimanov, "Optical hyperlens: far-field imaging beyond the diffraction limit," Opt. Express 14, 8247 (2006).
    [CrossRef] [PubMed]
  10. A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B 74, 075103(2006).
    [CrossRef]
  11. Liu Zhaowei, Hyesog Lee, Yi Xiong, Cheng Sun, Xiang Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007).
    [CrossRef]
  12. D. R. Smith, D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Phys. Rev. Lett. 90, 077405(2003).
    [CrossRef] [PubMed]
  13. B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116(2006).
    [CrossRef]
  14. S. Feng and J. Merle Elson, "Diffraction-suppressed high-resolution imaging through metallo- dielectric nanofilms," Opt. Express 14, 216 (2006).
    [CrossRef] [PubMed]
  15. M. Scalora, G. D'Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, and C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. W. Haus, "Negative refraction and sub-wavelength focusing in the visible range using transparent metallodielectric stacks," Opt. Express 15, 508 (2007).
    [CrossRef] [PubMed]
  16. P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
    [CrossRef]
  17. K. J. Webb and M. Yang, "Subwavelength imaging with a multilayer silver film structure," Opt. Lett. 31, 2130-2132 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-14-2130.
    [CrossRef] [PubMed]
  18. T. Xu, C. Du, C. Wang, and X. Luo, "Imaging with Metallic Nano-slits Array," Appl. Phys. Lett. 91,201501 (2007).
    [CrossRef]

2007

Liu Zhaowei, Hyesog Lee, Yi Xiong, Cheng Sun, Xiang Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007).
[CrossRef]

M. Scalora, G. D'Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, and C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. W. Haus, "Negative refraction and sub-wavelength focusing in the visible range using transparent metallodielectric stacks," Opt. Express 15, 508 (2007).
[CrossRef] [PubMed]

T. Xu, C. Du, C. Wang, and X. Luo, "Imaging with Metallic Nano-slits Array," Appl. Phys. Lett. 91,201501 (2007).
[CrossRef]

2006

P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
[CrossRef]

K. J. Webb and M. Yang, "Subwavelength imaging with a multilayer silver film structure," Opt. Lett. 31, 2130-2132 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-14-2130.
[CrossRef] [PubMed]

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116(2006).
[CrossRef]

S. Feng and J. Merle Elson, "Diffraction-suppressed high-resolution imaging through metallo- dielectric nanofilms," Opt. Express 14, 216 (2006).
[CrossRef] [PubMed]

Z. Jacob, L. V. Alekseyev, E. Narimanov, "Optical hyperlens: far-field imaging beyond the diffraction limit," Opt. Express 14, 8247 (2006).
[CrossRef] [PubMed]

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B 74, 075103(2006).
[CrossRef]

2005

2004

P. G. Kik, S. A. Maier, and H. A. Atwater, "Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources," Phys. Rev. B 69, 045418 (2004).
[CrossRef]

2003

N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

D. R. Smith, D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Phys. Rev. Lett. 90, 077405(2003).
[CrossRef] [PubMed]

2000

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1968

V. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Akozbek, N.

Alekseyev, L. V.

Atwater, H. A.

P. G. Kik, S. A. Maier, and H. A. Atwater, "Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources," Phys. Rev. B 69, 045418 (2004).
[CrossRef]

Belov, P. A.

P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
[CrossRef]

Blaikie, R. J.

Bloemer, M. J.

Cappeddu, M. G.

Centini, M.

D'Aguanno, G.

de Ceglia, D.

Du, C.

T. Xu, C. Du, C. Wang, and X. Luo, "Imaging with Metallic Nano-slits Array," Appl. Phys. Lett. 91,201501 (2007).
[CrossRef]

Engheta, N.

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B 74, 075103(2006).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

Feng, S.

Fowler, M.

Hao, Y.

P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
[CrossRef]

Haus, J. W.

Jacob, Z.

Kik, P. G.

P. G. Kik, S. A. Maier, and H. A. Atwater, "Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources," Phys. Rev. B 69, 045418 (2004).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Lee, Hyesog

Liu Zhaowei, Hyesog Lee, Yi Xiong, Cheng Sun, Xiang Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007).
[CrossRef]

Luo, X.

T. Xu, C. Du, C. Wang, and X. Luo, "Imaging with Metallic Nano-slits Array," Appl. Phys. Lett. 91,201501 (2007).
[CrossRef]

Maier, S. A.

P. G. Kik, S. A. Maier, and H. A. Atwater, "Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources," Phys. Rev. B 69, 045418 (2004).
[CrossRef]

Mandatori, A.

Mattiucci, N.

Melville, D. O. S.

Merle Elson, J.

Narimanov, E.

Narimanov, E. E.

Pendry, J. B.

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116(2006).
[CrossRef]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Podolskiy, V. A.

Ramakrishna, S. A.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

Salandrino, A.

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B 74, 075103(2006).
[CrossRef]

Scalora, M.

Schurig, D.

D. R. Smith, D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Phys. Rev. Lett. 90, 077405(2003).
[CrossRef] [PubMed]

Sibilia, C.

Smith, D. R.

D. R. Smith, D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Phys. Rev. Lett. 90, 077405(2003).
[CrossRef] [PubMed]

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Sun, Cheng

Liu Zhaowei, Hyesog Lee, Yi Xiong, Cheng Sun, Xiang Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007).
[CrossRef]

Tsai, D. P.

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116(2006).
[CrossRef]

Veselago, V.

V. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Wang, C.

T. Xu, C. Du, C. Wang, and X. Luo, "Imaging with Metallic Nano-slits Array," Appl. Phys. Lett. 91,201501 (2007).
[CrossRef]

Webb, K. J.

Wiltshire, M. C. K.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

Wood, B.

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116(2006).
[CrossRef]

Xiong, Yi

Liu Zhaowei, Hyesog Lee, Yi Xiong, Cheng Sun, Xiang Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007).
[CrossRef]

Xu, T.

T. Xu, C. Du, C. Wang, and X. Luo, "Imaging with Metallic Nano-slits Array," Appl. Phys. Lett. 91,201501 (2007).
[CrossRef]

Yang, M.

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

Zhang, Xiang

Liu Zhaowei, Hyesog Lee, Yi Xiong, Cheng Sun, Xiang Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007).
[CrossRef]

Zhaowei, Liu

Liu Zhaowei, Hyesog Lee, Yi Xiong, Cheng Sun, Xiang Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007).
[CrossRef]

Appl. Phys. Lett.

N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

T. Xu, C. Du, C. Wang, and X. Luo, "Imaging with Metallic Nano-slits Array," Appl. Phys. Lett. 91,201501 (2007).
[CrossRef]

J. Mod. Opt.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

Opt. Express

Opt. Lett.

Phys. Rev. B

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116(2006).
[CrossRef]

P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
[CrossRef]

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B 74, 075103(2006).
[CrossRef]

P. G. Kik, S. A. Maier, and H. A. Atwater, "Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources," Phys. Rev. B 69, 045418 (2004).
[CrossRef]

Phys. Rev. Lett.

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Phys. Rev. Lett. 90, 077405(2003).
[CrossRef] [PubMed]

Science

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Liu Zhaowei, Hyesog Lee, Yi Xiong, Cheng Sun, Xiang Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007).
[CrossRef]

Sov. Phys. Usp.

V. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of anisotropic media consisting of alternately layered dielectric and metal film with finite total depth of d.

Fig. 2.
Fig. 2.

Diagram representative of effective permittivity in the x and z direction for anisotropic structure with stacked lossless metal and dielectric film as shown in Fig. 1. Every available set of εx and εz for fixed εm and εd lies at a line defined by two points belonging to the two hyperbolas in the quadrants I and III. The five points A, B, C, D and O at coordinates are suggested as the candidates for point to point imaging with subwavelength resolution.

Fig. 3.
Fig. 3.

Schematic representatives of relationship between kx and kz for propagating waves in anisotropic media. The curves depicted by I, II, and IV represent relationship for εx and εz localized in the corresponding quadrant in Fig. 2. No propagating mode is supported in quadrant III.

Fig. 4.
Fig. 4.

Optical transfer function (OTF) of effective anisotropic media with fixed thickness of 0.4λ for three representative sets of dielectric and metal with εm=-5, εd=2 in (a) and (b); εm=-1, εd=2 in (c); εm=-2, εd=2 in (d). The plots in (a) are the cases of anisotropic parameters localized in the quadrants I, II and III (not positioned at axis). The other plots in (b), (c) and (d) represent the five subwavelength imaging cases depicted as A, B, C, D and O as shown in Fig. 2. The legends in each figure are the filling factors of dielectric material.

Fig. 5.
Fig. 5.

OTF plots with finite number (1, 4, 8 and 16) of layers of dielectric and absorption metal film. The total thickness of structure is fixed as 0.4λ. (a), (b) and (c) corresponding to εm=-5+0.5i, εm=-1+0.1i and εm=-2+0.2i respectively. The dielectric permittivity is fixed with εd=2. The plots in dashed line are the OTF calculated by the effective anisotropic media.

Fig. 6.
Fig. 6.

Simulated images of a spike like object of width 0.1λ (plotted in black dashed line) for layered dielectric-metal structures defined in Figs. 5(a) and (b) are associated with case A, (c) and (d) associated with case C, (e) and (f) case O. The blue dashed lines are calculated with effective anisotropic parameter and almost coincide with those for 16 layers. Noting the plots are drawn in different x ranges for better visualization.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

t ( k x ) = 1 cos ( k z d ) i 2 ( k z ε ε x k z + k z ε x ε k z ) sin ( k z d ) ,
t ( k x k 0 ) 1 cos ( ε x k 0 d ) + ε x k x 2 ε k 0 sin ( ε x k 0 d )
t ( k x k 0 ) 1 1 + ε 2 ε z k x d .
t A , C ( k x k 0 ) 1 1 + ε 2 ε z k x d 1 1 + ( ε m + ε d ) 2 ε m k x d
t B ( k x k 0 ) 1 cosh ( ε x k 0 d ) ε x k x 2 ε k 0 sinh ( ε x k 0 d )
1 1 ε x 2 ε k x d 1 1 ε m + ε d 2 ε d k x d
t D ( k x k 0 ) 1 cos ( ε x k 0 d ) + ε x k x 2 ε k 0 sin ( ε x k 0 d )
1 1 + ε x k x d 2 ε 1 1 + ( ε m + ε d ) 2 ε d k x d
[ E ˜ x ( x , z ) , E ˜ z ( x , z ) ] = [ 1 , k x k z ] E ˜ ( k x ) exp [ i k x x + i k z z ] d k x ,
[ E ˜ x ( x , z ) , E ˜ z ( x , z ) ] = t ˜ ( k x ) [ 1 , k x k z ] E ˜ ( k x ) exp [ i k x x + i k z z ] d k x .

Metrics