Abstract

In this paper, an investigation on broadband IR supercontinuum generation in single crystal sapphire fibers is presented. It is experimentally demonstrated that broadband IR supercontinuum spectrum (up to 3.2µm) can be achieved by launching ultra-short femtosecond laser pulses into single crystal sapphire fiber with a dimension 115µm in diameter and 5cm in length, which covers both the near IR spectral region and the lower end of the mid-IR spectral range. Furthermore, the mechanism of supercontinuum generation in single crystal sapphire fibers is briefly addressed. When the fiber length is shorter than the dispersion length, the self-phase modulation dominates the broadening effect. In this case, the broad supercontinuum spectrum with a smooth profile can be obtained. However, when the fiber length is longer than the dispersion length, the soliton-related dynamics accompanied by the self-phase modulation dominates the broadening effect. There are discrete spikes in the spectrum (corresponding to different order solitons). The above assumption of supercontinuum generation mechanism is quantitatively modeled by the computer simulation program and verified by the experimental results. Thus, one can adjust the spectral profile by properly choosing the length of the sapphire fibers. The broad IR spectral nature of this supercontinuum source can be very useful in a variety of applications such as broadband LADAR, remote sensing, and multi-spectrum free space communications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Quantum Electron. 13, 738-749 (2007).
    [CrossRef]
  2. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, and F. L. Terry, Jr, "Power scalable mid-infrared supercontinuum generation in ZBLAN Fluoride fibers with up to 1.3 watts time-averaged power," Opt. Express 15, 865-871 (2007).
    [CrossRef] [PubMed]
  3. I. T. Sorokina and K. L. Vodopyanov, Solid-state mid-infrared laser sources (Springer-Verlag, Berlin Heidelberg, 2003).
    [CrossRef]
  4. J. C. Knight, T. Birks, P. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  6. K. Tamura, E. Ippen, H. Haus, and L. Nelson, "77-fs pulse generation from a stretched pulse mode-locked all-fiber ring laser," Opt. Lett. 18, 1080-1082 (1993).
    [CrossRef] [PubMed]
  7. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight, P. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).
    [CrossRef]
  8. I. Hartl, X. Li, C. Chudoba, R. Ghanta, T. Ko, J. Fujimoto, J. Ranka, and R. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  9. D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  10. S. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003).
    [CrossRef]
  11. Y. Takushima and K. Kikuchi, "10-GHz, over 20-channel multiwavelength source by slicing super-continuum spectrum generated by in normal-dispersion fiber," Photon. Technol. Lett. 11, 322-324 (1999).
    [CrossRef]
  12. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 26, 2089-2090 (2000).
    [CrossRef]
  13. R. S. Watt, C. F. Kaminski, and J. Hult, "Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy," Appl. Phys. B 90, 47-53 (2008).
    [CrossRef]
  14. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, and F. J. Terry, Jr, "Mid-infrared supercontinuum generation to 4.5?m in ZBLAN fluoride fibers by nanosecond diode pumping," Opt. Lett. 31, 2553-2555 (2006).
    [CrossRef] [PubMed]
  15. J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, and L. B. Shaw, "Chalcogenide optical fibers target mid-IR applications," Laser Focus World 41, 83 (2005).
  16. F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russel, "Spectrally smooth supercontinuum from 530nm to 3?m in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4928-4934 (2006).
    [CrossRef] [PubMed]
  17. J.-L. Adam, "Non-oxide glasses and their applications in optics," J. Non-Crystalline Solids 287, 401-404 (2001).
    [CrossRef]
  18. V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russel, F. G. Omenetto, and A. J. Taylor "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation," Opt. Express 10, 1520-1525 (2002).
    [PubMed]
  19. T. J. Polletto, A. K. Ngo, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, "Comparison of germanium oxide fibers with silica and sapphire fiber tips for transmission of Erbium: YAG laser radiation," Lasers Surg. Med. 38, 787-791 (2006).
    [CrossRef]
  20. A. Major, F. Yoshino, I. Nikolakakos, J. Aitchison, and P. Smith, "Dispersion of the nonlinear refractive index in sapphire," Opt. Lett. 29, 602-604 (2004).
    [CrossRef] [PubMed]
  21. R. S. Feigelson, "Pulling optical fibers," J. Cryst. Growth 79, 669-680 (1986).
    [CrossRef]
  22. G. Merberg and J. Harrington, "Optical and mechanical properties of single-crystal sapphire optical fibers," Appl. Opt. 32, 3201-3209 (1993).
    [CrossRef] [PubMed]
  23. R. Nubling and J. Harrington, "Optical properties of single-crystal sapphire fibers," Appl. Opt. 36, 5934-5940 (1997).
    [CrossRef] [PubMed]
  24. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, "Supercontinuum generation in single crystal sapphire fibers," Opt. Commun. 281, 1113-1117 (2008).
    [CrossRef]
  25. G. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, New York, 1995).
  26. R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14, 6800-6812 (2006).
    [CrossRef] [PubMed]
  27. M. Bass, Handbook of Optics, Vol. II (McGraw-Hill, Inc., New York, 1995).
  28. J. A. Buck, Fundamentals of Optical Fibers, 2nd ed., (John Wiley and Sons, Inc., New Jersey, 2004).
  29. D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, "Dispersive wave blue-shift in supercontinuum generation," Opt. Express 14, 11997-12007 (2006).
    [CrossRef] [PubMed]
  30. G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004).
    [CrossRef] [PubMed]
  31. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibers," Opt. Express 12, 124-135 (2003).
    [CrossRef]
  32. A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87,203901-1-4 (2001).
    [CrossRef] [PubMed]
  33. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  34. W. Jia and W. M. Yen, "Raman scattering from sapphire fibers," J. Raman Spectroscopy 20, 785-788 (1989).
    [CrossRef]
  35. P. S. Westbrook, J. W. Nicholson, K. S. Feder, and A. D. Yablon, "Improved supercontinuum generation through UV processing of highly nonlinear fibers," J. Lightwave Technol. 23, 13-18 (2005).
    [CrossRef]
  36. Redrawn from http://optical-material.optical-components.com/

2008 (2)

R. S. Watt, C. F. Kaminski, and J. Hult, "Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy," Appl. Phys. B 90, 47-53 (2008).
[CrossRef]

S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, "Supercontinuum generation in single crystal sapphire fibers," Opt. Commun. 281, 1113-1117 (2008).
[CrossRef]

2007 (2)

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, and F. L. Terry, Jr, "Power scalable mid-infrared supercontinuum generation in ZBLAN Fluoride fibers with up to 1.3 watts time-averaged power," Opt. Express 15, 865-871 (2007).
[CrossRef] [PubMed]

2006 (6)

2005 (2)

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, and L. B. Shaw, "Chalcogenide optical fibers target mid-IR applications," Laser Focus World 41, 83 (2005).

P. S. Westbrook, J. W. Nicholson, K. S. Feder, and A. D. Yablon, "Improved supercontinuum generation through UV processing of highly nonlinear fibers," J. Lightwave Technol. 23, 13-18 (2005).
[CrossRef]

2004 (2)

2003 (2)

2002 (2)

2001 (2)

2000 (3)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 26, 2089-2090 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

1999 (1)

Y. Takushima and K. Kikuchi, "10-GHz, over 20-channel multiwavelength source by slicing super-continuum spectrum generated by in normal-dispersion fiber," Photon. Technol. Lett. 11, 322-324 (1999).
[CrossRef]

1997 (1)

1996 (1)

1993 (2)

1989 (1)

W. Jia and W. M. Yen, "Raman scattering from sapphire fibers," J. Raman Spectroscopy 20, 785-788 (1989).
[CrossRef]

1986 (1)

R. S. Feigelson, "Pulling optical fibers," J. Cryst. Growth 79, 669-680 (1986).
[CrossRef]

Abe, M.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 26, 2089-2090 (2000).
[CrossRef]

Adam, J.-L.

J.-L. Adam, "Non-oxide glasses and their applications in optics," J. Non-Crystalline Solids 287, 401-404 (2001).
[CrossRef]

Aggarwal, I. D.

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, and L. B. Shaw, "Chalcogenide optical fibers target mid-IR applications," Laser Focus World 41, 83 (2005).

Aitchison, J.

An, J. W.

S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, "Supercontinuum generation in single crystal sapphire fibers," Opt. Commun. 281, 1113-1117 (2008).
[CrossRef]

Apolonski, A.

Atkin, D. M.

Austin, D. R.

Birks, T.

Bizheva, K.

Brambilla, G.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

Brantley, C.

S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, "Supercontinuum generation in single crystal sapphire fibers," Opt. Commun. 281, 1113-1117 (2008).
[CrossRef]

Brown, T. G.

Busse, L. E.

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, and L. B. Shaw, "Chalcogenide optical fibers target mid-IR applications," Laser Focus World 41, 83 (2005).

Cheng, M.-Y.

Chudoba, C.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Cristiani, I.

Cundiff, S.

S. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003).
[CrossRef]

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

de Sterke, C. M.

Degiorgio, V.

Diddams, S.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Drexler, W.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Ebendorff-Heidepriem, H.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

Edwards, E.

S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, "Supercontinuum generation in single crystal sapphire fibers," Opt. Commun. 281, 1113-1117 (2008).
[CrossRef]

Efimov, A.

Eggleton, B. J.

Feder, K. S.

Feigelson, R. S.

R. S. Feigelson, "Pulling optical fibers," J. Cryst. Growth 79, 669-680 (1986).
[CrossRef]

Feng, X.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

Fercher, A.

Finazzi, V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

Flanagan, J. C.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

Fried, N. M.

T. J. Polletto, A. K. Ngo, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, "Comparison of germanium oxide fibers with silica and sapphire fiber tips for transmission of Erbium: YAG laser radiation," Lasers Surg. Med. 38, 787-791 (2006).
[CrossRef]

Fujimoto, J.

Galvanauskas, A.

Genty, G.

George, A. K.

Ghanta, R.

Giessen, H.

Hall, J.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Harrington, J.

Hartl, I.

Haus, H.

Hegde, R. S.

Hermann, B.

Horak, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

Hult, J.

R. S. Watt, C. F. Kaminski, and J. Hult, "Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy," Appl. Phys. B 90, 47-53 (2008).
[CrossRef]

Inoue, Y.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 26, 2089-2090 (2000).
[CrossRef]

Ippen, E.

Islam, M. N.

Jia, W.

W. Jia and W. M. Yen, "Raman scattering from sapphire fibers," J. Raman Spectroscopy 20, 785-788 (1989).
[CrossRef]

Joly, N. Y.

Jones, D.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Kaminski, C. F.

R. S. Watt, C. F. Kaminski, and J. Hult, "Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy," Appl. Phys. B 90, 47-53 (2008).
[CrossRef]

Kikuchi, K.

Y. Takushima and K. Kikuchi, "10-GHz, over 20-channel multiwavelength source by slicing super-continuum spectrum generated by in normal-dispersion fiber," Photon. Technol. Lett. 11, 322-324 (1999).
[CrossRef]

Kim, J. H.

S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, "Supercontinuum generation in single crystal sapphire fibers," Opt. Commun. 281, 1113-1117 (2008).
[CrossRef]

Knight, J.

Knight, J. C.

Ko, T.

Kulkarni, O. P.

Kumar, M.

Kumar, V. V. R. K.

Lee, J.

S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, "Supercontinuum generation in single crystal sapphire fibers," Opt. Commun. 281, 1113-1117 (2008).
[CrossRef]

Lehtonen, M.

Leong, J. Y. Y.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

Levin, K.

T. J. Polletto, A. K. Ngo, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, "Comparison of germanium oxide fibers with silica and sapphire fiber tips for transmission of Erbium: YAG laser radiation," Lasers Surg. Med. 38, 787-791 (2006).
[CrossRef]

Li, X.

Ludvigsen, H.

Luo, C.

S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, "Supercontinuum generation in single crystal sapphire fibers," Opt. Commun. 281, 1113-1117 (2008).
[CrossRef]

Major, A.

Merberg, G.

Monro, T. M.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

Mori, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 26, 2089-2090 (2000).
[CrossRef]

Morioka, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 26, 2089-2090 (2000).
[CrossRef]

Nelson, L.

Ngo, A. K.

T. J. Polletto, A. K. Ngo, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, "Comparison of germanium oxide fibers with silica and sapphire fiber tips for transmission of Erbium: YAG laser radiation," Lasers Surg. Med. 38, 787-791 (2006).
[CrossRef]

Nguyen, V. Q.

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, and L. B. Shaw, "Chalcogenide optical fibers target mid-IR applications," Laser Focus World 41, 83 (2005).

Nicholson, J. W.

Nikolakakos, I.

Nubling, R.

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 26, 2089-2090 (2000).
[CrossRef]

Omenetto, F. G.

Petropoulos, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

Poletti, F.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

Polletto, T. J.

T. J. Polletto, A. K. Ngo, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, "Comparison of germanium oxide fibers with silica and sapphire fiber tips for transmission of Erbium: YAG laser radiation," Lasers Surg. Med. 38, 787-791 (2006).
[CrossRef]

Povazay, B.

Price, J. H. V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

Pureza, P. C.

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, and L. B. Shaw, "Chalcogenide optical fibers target mid-IR applications," Laser Focus World 41, 83 (2005).

Ranka, J.

I. Hartl, X. Li, C. Chudoba, R. Ghanta, T. Ko, J. Fujimoto, J. Ranka, and R. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[CrossRef]

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Ranka, J. K.

Reeves, W. H.

Richardson, D. J.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

Ross, M.

Ruffin, P.

S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, "Supercontinuum generation in single crystal sapphire fibers," Opt. Commun. 281, 1113-1117 (2008).
[CrossRef]

Russel, P. St. J.

Russell, P.

Sanghera, J. S.

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, and L. B. Shaw, "Chalcogenide optical fibers target mid-IR applications," Laser Focus World 41, 83 (2005).

Sato, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 26, 2089-2090 (2000).
[CrossRef]

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 26, 2089-2090 (2000).
[CrossRef]

Sattmann, H.

Scherzer, E.

Shaw, L. B.

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, and L. B. Shaw, "Chalcogenide optical fibers target mid-IR applications," Laser Focus World 41, 83 (2005).

Shibata, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 26, 2089-2090 (2000).
[CrossRef]

Smith, P.

Stentz, A.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Stentz, A. J.

Takara, H.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 26, 2089-2090 (2000).
[CrossRef]

Takushima, Y.

Y. Takushima and K. Kikuchi, "10-GHz, over 20-channel multiwavelength source by slicing super-continuum spectrum generated by in normal-dispersion fiber," Photon. Technol. Lett. 11, 322-324 (1999).
[CrossRef]

Tamura, K.

Tartara, L.

Taylor, A. J.

Tchapyjnikov, A.

T. J. Polletto, A. K. Ngo, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, "Comparison of germanium oxide fibers with silica and sapphire fiber tips for transmission of Erbium: YAG laser radiation," Lasers Surg. Med. 38, 787-791 (2006).
[CrossRef]

Tediosi, R.

Teipel, J.

Terry, F. J.

Terry, F. L.

Tran, D.

T. J. Polletto, A. K. Ngo, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, "Comparison of germanium oxide fibers with silica and sapphire fiber tips for transmission of Erbium: YAG laser radiation," Lasers Surg. Med. 38, 787-791 (2006).
[CrossRef]

Unterhuber, A.

Vetterlein, M.

Wadsworth, W.

Watt, R. S.

R. S. Watt, C. F. Kaminski, and J. Hult, "Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy," Appl. Phys. B 90, 47-53 (2008).
[CrossRef]

Wehner, M. R.

Westbrook, P. S.

Windeler, R.

I. Hartl, X. Li, C. Chudoba, R. Ghanta, T. Ko, J. Fujimoto, J. Ranka, and R. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[CrossRef]

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Windeler, R. S.

Winful, H. G.

Wolchover, N. A.

Xia, C.

Yablon, A. D.

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 26, 2089-2090 (2000).
[CrossRef]

Ye, J.

S. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003).
[CrossRef]

Yen, W. M.

W. Jia and W. M. Yen, "Raman scattering from sapphire fibers," J. Raman Spectroscopy 20, 785-788 (1989).
[CrossRef]

Yin, S.

S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, "Supercontinuum generation in single crystal sapphire fibers," Opt. Commun. 281, 1113-1117 (2008).
[CrossRef]

Yoshino, F.

Zhan, C.

S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, "Supercontinuum generation in single crystal sapphire fibers," Opt. Commun. 281, 1113-1117 (2008).
[CrossRef]

Zhang, R.

Appl. Opt. (2)

Appl. Phys. B (1)

R. S. Watt, C. F. Kaminski, and J. Hult, "Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy," Appl. Phys. B 90, 47-53 (2008).
[CrossRef]

Electron. Lett. (1)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 26, 2089-2090 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

J. Cryst. Growth (1)

R. S. Feigelson, "Pulling optical fibers," J. Cryst. Growth 79, 669-680 (1986).
[CrossRef]

J. Lightwave Technol. (1)

J. Non-Crystalline Solids (1)

J.-L. Adam, "Non-oxide glasses and their applications in optics," J. Non-Crystalline Solids 287, 401-404 (2001).
[CrossRef]

J. Raman Spectroscopy (1)

W. Jia and W. M. Yen, "Raman scattering from sapphire fibers," J. Raman Spectroscopy 20, 785-788 (1989).
[CrossRef]

Laser Focus World (1)

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, and L. B. Shaw, "Chalcogenide optical fibers target mid-IR applications," Laser Focus World 41, 83 (2005).

Lasers Surg. Med. (1)

T. J. Polletto, A. K. Ngo, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, "Comparison of germanium oxide fibers with silica and sapphire fiber tips for transmission of Erbium: YAG laser radiation," Lasers Surg. Med. 38, 787-791 (2006).
[CrossRef]

Opt. Commun. (1)

S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, "Supercontinuum generation in single crystal sapphire fibers," Opt. Commun. 281, 1113-1117 (2008).
[CrossRef]

Opt. Express (7)

F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russel, "Spectrally smooth supercontinuum from 530nm to 3?m in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4928-4934 (2006).
[CrossRef] [PubMed]

R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14, 6800-6812 (2006).
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004).
[CrossRef] [PubMed]

D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, "Dispersive wave blue-shift in supercontinuum generation," Opt. Express 14, 11997-12007 (2006).
[CrossRef] [PubMed]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, and F. L. Terry, Jr, "Power scalable mid-infrared supercontinuum generation in ZBLAN Fluoride fibers with up to 1.3 watts time-averaged power," Opt. Express 15, 865-871 (2007).
[CrossRef] [PubMed]

V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russel, F. G. Omenetto, and A. J. Taylor "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation," Opt. Express 10, 1520-1525 (2002).
[PubMed]

I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibers," Opt. Express 12, 124-135 (2003).
[CrossRef]

Opt. Lett. (7)

A. Major, F. Yoshino, I. Nikolakakos, J. Aitchison, and P. Smith, "Dispersion of the nonlinear refractive index in sapphire," Opt. Lett. 29, 602-604 (2004).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

K. Tamura, E. Ippen, H. Haus, and L. Nelson, "77-fs pulse generation from a stretched pulse mode-locked all-fiber ring laser," Opt. Lett. 18, 1080-1082 (1993).
[CrossRef] [PubMed]

J. C. Knight, T. Birks, P. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

I. Hartl, X. Li, C. Chudoba, R. Ghanta, T. Ko, J. Fujimoto, J. Ranka, and R. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[CrossRef]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight, P. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).
[CrossRef]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, and F. J. Terry, Jr, "Mid-infrared supercontinuum generation to 4.5?m in ZBLAN fluoride fibers by nanosecond diode pumping," Opt. Lett. 31, 2553-2555 (2006).
[CrossRef] [PubMed]

Photon. Technol. Lett. (1)

Y. Takushima and K. Kikuchi, "10-GHz, over 20-channel multiwavelength source by slicing super-continuum spectrum generated by in normal-dispersion fiber," Photon. Technol. Lett. 11, 322-324 (1999).
[CrossRef]

Rev. Mod. Phys. (2)

S. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Science (1)

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Other (6)

I. T. Sorokina and K. L. Vodopyanov, Solid-state mid-infrared laser sources (Springer-Verlag, Berlin Heidelberg, 2003).
[CrossRef]

G. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, New York, 1995).

M. Bass, Handbook of Optics, Vol. II (McGraw-Hill, Inc., New York, 1995).

J. A. Buck, Fundamentals of Optical Fibers, 2nd ed., (John Wiley and Sons, Inc., New Jersey, 2004).

A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87,203901-1-4 (2001).
[CrossRef] [PubMed]

Redrawn from http://optical-material.optical-components.com/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Calculated material dispersion for the sapphire fiber

Fig. 2.
Fig. 2.

Experimental set up for supercontinuum generation in sapphire fiber

Fig. 3.
Fig. 3.

Experimentally measured spectra for a 5cm sapphire fiber at two different input peak power levels of (a) 3.213×106W and (b) 1.607×107W.

Fig. 4.
Fig. 4.

Experimentally measured spectra for a 35cm sapphire fiber at two different input power levels of (a) 3.213×106W and (b) 1.607×107W.

Fig. 5.
Fig. 5.

Spectra comparison between simulation (dashed lines) and experimental results (solid lines) for (a) 5cm sapphire fiber and (b) 35cm sapphire fiber.

Fig. 6.
Fig. 6.

Transmission characteristics of silica and sapphire materials [36].

Fig. 7.
Fig. 7.

Experimentally measured spectra for a 5cm sapphire fiber at the pump wavelength of 2.5µm and input power level of 9.640×106W.

Tables (1)

Tables Icon

Table 1. dispersion parameter β

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A z + α 2 A + i 2 β 2 2 A T 2 1 6 β 3 3 A T 3 = i γ [ A 2 A + i ω 0 T ( A 2 A ) T R A A 2 T ] ,
n o ( λ ) = 1 + 1.4313496 λ 2 λ 2 ( 0.0726631 ) 2 + 0.65054713 λ 2 λ 2 ( 0.1193242 ) 2 + 5.3414021 λ 2 λ 2 ( 18.028251 ) 2 .
D ( λ ) = λ c d 2 n o d λ 2 .
L D = T 0 2 β 2 , and
L NL = 1 γ P 0 ,
β 2 = λ 3 2 π c 2 · d 2 n 0 d λ 2 ,
n 2 β n ( ω 0 ) n ! ( ω R ω 0 ) n = γ ( ω 0 ) P 0 2 ,

Metrics