Abstract

The gain characteristics of liquid crystal photorefractive cells doped with ferroelectric nanoparticles has been measured. The liquid crystal two beam coupling gain is found to reverse in sign and increase in magnitude through the addition of ferroelectric BaTiO3 nanoparticles, yielding gain coefficients up to 1100 cm−1 in the Bragg regime. We attribute the novel effects of gain reversal and magnitude increase to interactions between the ferroelectric particles’ spontaneous polarization and the local liquid crystal flexopolarization.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Brignon, I. Bongrand, B. Loiseaux and J. P. Huignard, "Signal-beam amplification by two-wave mixing in a liquid-crystal light valve," Opt. Lett. 22, 1855 (1997).
    [CrossRef]
  2. F. Kajzar, S. Bartkiewicz, and A. Miniewicz, "Optical amplification with high gain in hybrid-polymer-liquid-crystal structures," Appl. Phys. Lett. 74, 2924 (1999).
    [CrossRef]
  3. S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, "High gain of light in photoconducting polymer - nematic liquid crystal hybrid structures," Opt. Commun. 187, 257 (2001).
    [CrossRef]
  4. G. Cook, C. A. Wyres, M. J. Deer, and D. C. Jones, "Hybrid organic-inorganic photorefractives," SPIE 5213, 63 (2003).
    [CrossRef]
  5. G. Cook, J. L. Carns, M. A. Saleh, and D. R. Evans, "Substrate induced pre-tilt in hybrid liquid crystal/inorganic photorefractives," Mol. Cryst. Liq. Cryst.  453, 141 (2006).
    [CrossRef]
  6. D. R. Evans and G. Cook, "Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids," J. Nonlinear Opt. Phys. Mat.  16, 271 (2007).
    [CrossRef]
  7. R. L. Sutherland, G. Cook, D. R. Evans, "Determination of large nematic pre-tilt in liquid crystal cells with mechanically rubbed photorefractive Ce:SBN windows," Opt. Express 14, 5365 (2006).
    [CrossRef] [PubMed]
  8. M. Kaczmarek, A. Dyadyusha, O. Buchnev, Yu. Reznikov, and V. Yu Reshetnyak, "Improved photorefractive response in liquid crystals with ferroelectric nanoparticles," Nonlinear Opt., Quantum Opt. 35, 217 (2006).
  9. O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Yu Reshetnyak, and Y. Reznikov, "Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals," J. Opt. Soc Am. B 24, 1512 (2007).
    [CrossRef]
  10. F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801 (2006).
    [CrossRef] [PubMed]
  11. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, Second ed., (Clarendon Press, 1993) pp. 136.
  12. S. P. Palto, N. J. Mottram, and M. A. Osipov, "Flexoelectric instability and a spontaneous chiral-symmetry breaking in a nematic liquid crystal cell with asymmetric boundary conditions," Phys. Rev. E 75, 061707 (2007).
    [CrossRef]
  13. T. Ohno, D. Suzuki, H. Suzuki, T. Ida, J. Soc. Powder Technology, 41, 2, 86-91 (2004, in Japanese) and KONA, no. 22, 195 (2004, English translation).
    [CrossRef]

2007

D. R. Evans and G. Cook, "Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids," J. Nonlinear Opt. Phys. Mat.  16, 271 (2007).
[CrossRef]

O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Yu Reshetnyak, and Y. Reznikov, "Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals," J. Opt. Soc Am. B 24, 1512 (2007).
[CrossRef]

S. P. Palto, N. J. Mottram, and M. A. Osipov, "Flexoelectric instability and a spontaneous chiral-symmetry breaking in a nematic liquid crystal cell with asymmetric boundary conditions," Phys. Rev. E 75, 061707 (2007).
[CrossRef]

2006

R. L. Sutherland, G. Cook, D. R. Evans, "Determination of large nematic pre-tilt in liquid crystal cells with mechanically rubbed photorefractive Ce:SBN windows," Opt. Express 14, 5365 (2006).
[CrossRef] [PubMed]

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef] [PubMed]

M. Kaczmarek, A. Dyadyusha, O. Buchnev, Yu. Reznikov, and V. Yu Reshetnyak, "Improved photorefractive response in liquid crystals with ferroelectric nanoparticles," Nonlinear Opt., Quantum Opt. 35, 217 (2006).

G. Cook, J. L. Carns, M. A. Saleh, and D. R. Evans, "Substrate induced pre-tilt in hybrid liquid crystal/inorganic photorefractives," Mol. Cryst. Liq. Cryst.  453, 141 (2006).
[CrossRef]

2003

G. Cook, C. A. Wyres, M. J. Deer, and D. C. Jones, "Hybrid organic-inorganic photorefractives," SPIE 5213, 63 (2003).
[CrossRef]

2001

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, "High gain of light in photoconducting polymer - nematic liquid crystal hybrid structures," Opt. Commun. 187, 257 (2001).
[CrossRef]

1999

F. Kajzar, S. Bartkiewicz, and A. Miniewicz, "Optical amplification with high gain in hybrid-polymer-liquid-crystal structures," Appl. Phys. Lett. 74, 2924 (1999).
[CrossRef]

1997

Bartkiewicz, S.

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, "High gain of light in photoconducting polymer - nematic liquid crystal hybrid structures," Opt. Commun. 187, 257 (2001).
[CrossRef]

F. Kajzar, S. Bartkiewicz, and A. Miniewicz, "Optical amplification with high gain in hybrid-polymer-liquid-crystal structures," Appl. Phys. Lett. 74, 2924 (1999).
[CrossRef]

Bongrand, I.

Brignon, A.

Buchnev, O.

O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Yu Reshetnyak, and Y. Reznikov, "Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals," J. Opt. Soc Am. B 24, 1512 (2007).
[CrossRef]

M. Kaczmarek, A. Dyadyusha, O. Buchnev, Yu. Reznikov, and V. Yu Reshetnyak, "Improved photorefractive response in liquid crystals with ferroelectric nanoparticles," Nonlinear Opt., Quantum Opt. 35, 217 (2006).

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef] [PubMed]

Carns, J. L.

G. Cook, J. L. Carns, M. A. Saleh, and D. R. Evans, "Substrate induced pre-tilt in hybrid liquid crystal/inorganic photorefractives," Mol. Cryst. Liq. Cryst.  453, 141 (2006).
[CrossRef]

Cheon, C. I.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef] [PubMed]

Cook, G.

D. R. Evans and G. Cook, "Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids," J. Nonlinear Opt. Phys. Mat.  16, 271 (2007).
[CrossRef]

G. Cook, J. L. Carns, M. A. Saleh, and D. R. Evans, "Substrate induced pre-tilt in hybrid liquid crystal/inorganic photorefractives," Mol. Cryst. Liq. Cryst.  453, 141 (2006).
[CrossRef]

R. L. Sutherland, G. Cook, D. R. Evans, "Determination of large nematic pre-tilt in liquid crystal cells with mechanically rubbed photorefractive Ce:SBN windows," Opt. Express 14, 5365 (2006).
[CrossRef] [PubMed]

G. Cook, C. A. Wyres, M. J. Deer, and D. C. Jones, "Hybrid organic-inorganic photorefractives," SPIE 5213, 63 (2003).
[CrossRef]

Deer, M. J.

G. Cook, C. A. Wyres, M. J. Deer, and D. C. Jones, "Hybrid organic-inorganic photorefractives," SPIE 5213, 63 (2003).
[CrossRef]

Dyadyusha, A.

O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Yu Reshetnyak, and Y. Reznikov, "Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals," J. Opt. Soc Am. B 24, 1512 (2007).
[CrossRef]

M. Kaczmarek, A. Dyadyusha, O. Buchnev, Yu. Reznikov, and V. Yu Reshetnyak, "Improved photorefractive response in liquid crystals with ferroelectric nanoparticles," Nonlinear Opt., Quantum Opt. 35, 217 (2006).

Evans, D. R.

D. R. Evans and G. Cook, "Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids," J. Nonlinear Opt. Phys. Mat.  16, 271 (2007).
[CrossRef]

G. Cook, J. L. Carns, M. A. Saleh, and D. R. Evans, "Substrate induced pre-tilt in hybrid liquid crystal/inorganic photorefractives," Mol. Cryst. Liq. Cryst.  453, 141 (2006).
[CrossRef]

R. L. Sutherland, G. Cook, D. R. Evans, "Determination of large nematic pre-tilt in liquid crystal cells with mechanically rubbed photorefractive Ce:SBN windows," Opt. Express 14, 5365 (2006).
[CrossRef] [PubMed]

Glushchenko, A.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef] [PubMed]

Huignard, J.P.

Jones, D. C.

G. Cook, C. A. Wyres, M. J. Deer, and D. C. Jones, "Hybrid organic-inorganic photorefractives," SPIE 5213, 63 (2003).
[CrossRef]

Kaczmarek, M.

O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Yu Reshetnyak, and Y. Reznikov, "Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals," J. Opt. Soc Am. B 24, 1512 (2007).
[CrossRef]

M. Kaczmarek, A. Dyadyusha, O. Buchnev, Yu. Reznikov, and V. Yu Reshetnyak, "Improved photorefractive response in liquid crystals with ferroelectric nanoparticles," Nonlinear Opt., Quantum Opt. 35, 217 (2006).

Kajzar, F.

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, "High gain of light in photoconducting polymer - nematic liquid crystal hybrid structures," Opt. Commun. 187, 257 (2001).
[CrossRef]

F. Kajzar, S. Bartkiewicz, and A. Miniewicz, "Optical amplification with high gain in hybrid-polymer-liquid-crystal structures," Appl. Phys. Lett. 74, 2924 (1999).
[CrossRef]

Li, F.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef] [PubMed]

Loiseaux, B.

Matczyszyn, K.

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, "High gain of light in photoconducting polymer - nematic liquid crystal hybrid structures," Opt. Commun. 187, 257 (2001).
[CrossRef]

Miniewicz, A.

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, "High gain of light in photoconducting polymer - nematic liquid crystal hybrid structures," Opt. Commun. 187, 257 (2001).
[CrossRef]

F. Kajzar, S. Bartkiewicz, and A. Miniewicz, "Optical amplification with high gain in hybrid-polymer-liquid-crystal structures," Appl. Phys. Lett. 74, 2924 (1999).
[CrossRef]

Mottram, N. J.

S. P. Palto, N. J. Mottram, and M. A. Osipov, "Flexoelectric instability and a spontaneous chiral-symmetry breaking in a nematic liquid crystal cell with asymmetric boundary conditions," Phys. Rev. E 75, 061707 (2007).
[CrossRef]

Osipov, M. A.

S. P. Palto, N. J. Mottram, and M. A. Osipov, "Flexoelectric instability and a spontaneous chiral-symmetry breaking in a nematic liquid crystal cell with asymmetric boundary conditions," Phys. Rev. E 75, 061707 (2007).
[CrossRef]

Palto, S. P.

S. P. Palto, N. J. Mottram, and M. A. Osipov, "Flexoelectric instability and a spontaneous chiral-symmetry breaking in a nematic liquid crystal cell with asymmetric boundary conditions," Phys. Rev. E 75, 061707 (2007).
[CrossRef]

Reshetnyak, V. Yu

M. Kaczmarek, A. Dyadyusha, O. Buchnev, Yu. Reznikov, and V. Yu Reshetnyak, "Improved photorefractive response in liquid crystals with ferroelectric nanoparticles," Nonlinear Opt., Quantum Opt. 35, 217 (2006).

Reznikov, Y.

O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Yu Reshetnyak, and Y. Reznikov, "Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals," J. Opt. Soc Am. B 24, 1512 (2007).
[CrossRef]

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef] [PubMed]

Reznikov, Yu.

M. Kaczmarek, A. Dyadyusha, O. Buchnev, Yu. Reznikov, and V. Yu Reshetnyak, "Improved photorefractive response in liquid crystals with ferroelectric nanoparticles," Nonlinear Opt., Quantum Opt. 35, 217 (2006).

Saleh, M. A.

G. Cook, J. L. Carns, M. A. Saleh, and D. R. Evans, "Substrate induced pre-tilt in hybrid liquid crystal/inorganic photorefractives," Mol. Cryst. Liq. Cryst.  453, 141 (2006).
[CrossRef]

Sluckin, T. J.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef] [PubMed]

Sutherland, R. L.

West, J. L.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef] [PubMed]

Wyres, C. A.

G. Cook, C. A. Wyres, M. J. Deer, and D. C. Jones, "Hybrid organic-inorganic photorefractives," SPIE 5213, 63 (2003).
[CrossRef]

Yu Reshetnyak, V.

O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Yu Reshetnyak, and Y. Reznikov, "Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals," J. Opt. Soc Am. B 24, 1512 (2007).
[CrossRef]

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

F. Kajzar, S. Bartkiewicz, and A. Miniewicz, "Optical amplification with high gain in hybrid-polymer-liquid-crystal structures," Appl. Phys. Lett. 74, 2924 (1999).
[CrossRef]

J. Nonlinear Opt. Phys. Mat.

D. R. Evans and G. Cook, "Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids," J. Nonlinear Opt. Phys. Mat.  16, 271 (2007).
[CrossRef]

JOSA B

O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Yu Reshetnyak, and Y. Reznikov, "Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals," J. Opt. Soc Am. B 24, 1512 (2007).
[CrossRef]

Mol. Cryst. & Liq. Cryst.

G. Cook, J. L. Carns, M. A. Saleh, and D. R. Evans, "Substrate induced pre-tilt in hybrid liquid crystal/inorganic photorefractives," Mol. Cryst. Liq. Cryst.  453, 141 (2006).
[CrossRef]

Nonlinear Opt., Quantum Opt.

M. Kaczmarek, A. Dyadyusha, O. Buchnev, Yu. Reznikov, and V. Yu Reshetnyak, "Improved photorefractive response in liquid crystals with ferroelectric nanoparticles," Nonlinear Opt., Quantum Opt. 35, 217 (2006).

Opt. Commun.

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, "High gain of light in photoconducting polymer - nematic liquid crystal hybrid structures," Opt. Commun. 187, 257 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

S. P. Palto, N. J. Mottram, and M. A. Osipov, "Flexoelectric instability and a spontaneous chiral-symmetry breaking in a nematic liquid crystal cell with asymmetric boundary conditions," Phys. Rev. E 75, 061707 (2007).
[CrossRef]

Phys. Rev. Lett.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef] [PubMed]

SPIE

G. Cook, C. A. Wyres, M. J. Deer, and D. C. Jones, "Hybrid organic-inorganic photorefractives," SPIE 5213, 63 (2003).
[CrossRef]

Other

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, Second ed., (Clarendon Press, 1993) pp. 136.

T. Ohno, D. Suzuki, H. Suzuki, T. Ida, J. Soc. Powder Technology, 41, 2, 86-91 (2004, in Japanese) and KONA, no. 22, 195 (2004, English translation).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental arrangement

Fig. 2.
Fig. 2.

BaTiO3 mixture particle sizes and solution morphologies as a function of grinding time.

Fig. 3.
Fig. 3.

Small signal gain coefficient vs. grating spacing for 0.5 weight % TL205/BaTiO3 mixtures with different particle sizes.

Fig. 4.
Fig. 4.

Small signal gain coefficient vs. grating spacing for TL205/BaTiO3 mixtures with 11.6 nm diameter particles with different concentrations.

Fig. 5.
Fig. 5.

Small signal gain coefficient vs. grating spacing for 0.5 weight % TL205/BaTiO3 mixtures for parallel and anti-parallel cell rubbing orientations. Filled points are anti-parallel rubbed data, open points are parallel rubbed data.

Metrics