Abstract

The gain characteristics of liquid crystal photorefractive cells doped with ferroelectric nanoparticles has been measured. The liquid crystal two beam coupling gain is found to reverse in sign and increase in magnitude through the addition of ferroelectric BaTiO3 nanoparticles, yielding gain coefficients up to 1100 cm−1 in the Bragg regime. We attribute the novel effects of gain reversal and magnitude increase to interactions between the ferroelectric particles’ spontaneous polarization and the local liquid crystal flexopolarization.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Asymmetric Freedericksz transitions from symmetric liquid crystal cells doped with harvested ferroelectric nanoparticles

G. Cook, V. Yu. Reshetnyak, R. F. Ziolo, S. A. Basun, P. P. Banerjee, and D. R. Evans
Opt. Express 18(16) 17339-17345 (2010)

Size dependence of harvested BaTiO3 nanoparticles on the electro-optic and dielectric properties of ferroelectric liquid crystal nanocolloids

Arkadiusz Rudzki, Dean R. Evans, Gary Cook, and Wolfgang Haase
Appl. Opt. 52(22) E6-E14 (2013)

Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals

Oleksandr Buchnev, Andriy Dyadyusha, Malgosia Kaczmarek, Victor Reshetnyak, and Yuriy Reznikov
J. Opt. Soc. Am. B 24(7) 1512-1516 (2007)

References

  • View by:
  • |
  • |
  • |

  1. A. Brignon, I. Bongrand, B. Loiseaux, and J.P. Huignard, “Signal-beam amplification by two-wave mixing in a liquid-crystal light valve,” Opt. Lett. 22, 1855 (1997).
    [Crossref]
  2. F. Kajzar, S. Bartkiewicz, and A. Miniewicz, “Optical amplification with high gain in hybrid-polymer-liquid-crystal structures,” Appl. Phys. Lett. 74, 2924 (1999).
    [Crossref]
  3. S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer - nematic liquid crystal hybrid structures,” Opt. Commun. 187, 257 (2001).
    [Crossref]
  4. G. Cook, C. A. Wyres, M. J. Deer, and D. C. Jones, “Hybrid organic-inorganic photorefractives,” SPIE 5213, 63 (2003).
    [Crossref]
  5. G. Cook, J. L. Carns, M. A. Saleh, and D. R. Evans, “Substrate induced pre-tilt in hybrid liquid crystal/inorganic photorefractives,” Mol. Cryst. & Liq. Cryst.,  453, 141 (2006).
    [Crossref]
  6. D. R. Evans and G. Cook, “Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids,” J. Nonlinear Opt. Phys. Mat.,  16, 271 (2007).
    [Crossref]
  7. R. L. Sutherland, G. Cook, and D. R. Evans, “Determination of large nematic pre-tilt in liquid crystal cells with mechanically rubbed photorefractive Ce:SBN windows,” Opt. Express,  14, 5365 (2006).
    [Crossref] [PubMed]
  8. M. Kaczmarek, A. Dyadyusha, O. Buchnev, Yu. Reznikov, and V. Yu Reshetnyak, “Improved photorefractive response in liquid crystals with ferroelectric nanoparticles,” Nonlinear Opt., Quantum Opt. 35, 217 (2006).
  9. O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Yu Reshetnyak, and Y. Reznikov, “Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals,” JOSA B, 24, N7, 1512, (2007).
    [Crossref]
  10. F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
    [Crossref] [PubMed]
  11. P. G. De Gennes and J. Prost, “The Physics of Liquid Crystals,” Second edition, Clarendon Press, page 136 (1993).
  12. S. P. Palto, N. J. Mottram, and M. A. Osipov, “Flexoelectric instability and a spontaneous chiral-symmetry breaking in a nematic liquid crystal cell with asymmetric boundary conditions,” Phys. Rev. E 75, 061707 (2007).
    [Crossref]
  13. T. Ohno, D. Suzuki, H. Suzuki, and T. Ida, J. Soc. Powder Technology, 41, 2, 86–91 (2004, in Japanese) and KONA, no. 22, 195 (2004, English translation).
    [Crossref]

2007 (3)

D. R. Evans and G. Cook, “Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids,” J. Nonlinear Opt. Phys. Mat.,  16, 271 (2007).
[Crossref]

O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Yu Reshetnyak, and Y. Reznikov, “Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals,” JOSA B, 24, N7, 1512, (2007).
[Crossref]

S. P. Palto, N. J. Mottram, and M. A. Osipov, “Flexoelectric instability and a spontaneous chiral-symmetry breaking in a nematic liquid crystal cell with asymmetric boundary conditions,” Phys. Rev. E 75, 061707 (2007).
[Crossref]

2006 (4)

G. Cook, J. L. Carns, M. A. Saleh, and D. R. Evans, “Substrate induced pre-tilt in hybrid liquid crystal/inorganic photorefractives,” Mol. Cryst. & Liq. Cryst.,  453, 141 (2006).
[Crossref]

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[Crossref] [PubMed]

R. L. Sutherland, G. Cook, and D. R. Evans, “Determination of large nematic pre-tilt in liquid crystal cells with mechanically rubbed photorefractive Ce:SBN windows,” Opt. Express,  14, 5365 (2006).
[Crossref] [PubMed]

M. Kaczmarek, A. Dyadyusha, O. Buchnev, Yu. Reznikov, and V. Yu Reshetnyak, “Improved photorefractive response in liquid crystals with ferroelectric nanoparticles,” Nonlinear Opt., Quantum Opt. 35, 217 (2006).

2003 (1)

G. Cook, C. A. Wyres, M. J. Deer, and D. C. Jones, “Hybrid organic-inorganic photorefractives,” SPIE 5213, 63 (2003).
[Crossref]

2001 (1)

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer - nematic liquid crystal hybrid structures,” Opt. Commun. 187, 257 (2001).
[Crossref]

1999 (1)

F. Kajzar, S. Bartkiewicz, and A. Miniewicz, “Optical amplification with high gain in hybrid-polymer-liquid-crystal structures,” Appl. Phys. Lett. 74, 2924 (1999).
[Crossref]

1997 (1)

Bartkiewicz, S.

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer - nematic liquid crystal hybrid structures,” Opt. Commun. 187, 257 (2001).
[Crossref]

F. Kajzar, S. Bartkiewicz, and A. Miniewicz, “Optical amplification with high gain in hybrid-polymer-liquid-crystal structures,” Appl. Phys. Lett. 74, 2924 (1999).
[Crossref]

Bongrand, I.

Brignon, A.

Buchnev, O.

O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Yu Reshetnyak, and Y. Reznikov, “Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals,” JOSA B, 24, N7, 1512, (2007).
[Crossref]

M. Kaczmarek, A. Dyadyusha, O. Buchnev, Yu. Reznikov, and V. Yu Reshetnyak, “Improved photorefractive response in liquid crystals with ferroelectric nanoparticles,” Nonlinear Opt., Quantum Opt. 35, 217 (2006).

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[Crossref] [PubMed]

Carns, J. L.

G. Cook, J. L. Carns, M. A. Saleh, and D. R. Evans, “Substrate induced pre-tilt in hybrid liquid crystal/inorganic photorefractives,” Mol. Cryst. & Liq. Cryst.,  453, 141 (2006).
[Crossref]

Cheon, C. I.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[Crossref] [PubMed]

Cook, G.

D. R. Evans and G. Cook, “Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids,” J. Nonlinear Opt. Phys. Mat.,  16, 271 (2007).
[Crossref]

G. Cook, J. L. Carns, M. A. Saleh, and D. R. Evans, “Substrate induced pre-tilt in hybrid liquid crystal/inorganic photorefractives,” Mol. Cryst. & Liq. Cryst.,  453, 141 (2006).
[Crossref]

R. L. Sutherland, G. Cook, and D. R. Evans, “Determination of large nematic pre-tilt in liquid crystal cells with mechanically rubbed photorefractive Ce:SBN windows,” Opt. Express,  14, 5365 (2006).
[Crossref] [PubMed]

G. Cook, C. A. Wyres, M. J. Deer, and D. C. Jones, “Hybrid organic-inorganic photorefractives,” SPIE 5213, 63 (2003).
[Crossref]

De Gennes, P. G.

P. G. De Gennes and J. Prost, “The Physics of Liquid Crystals,” Second edition, Clarendon Press, page 136 (1993).

Deer, M. J.

G. Cook, C. A. Wyres, M. J. Deer, and D. C. Jones, “Hybrid organic-inorganic photorefractives,” SPIE 5213, 63 (2003).
[Crossref]

Dyadyusha, A.

O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Yu Reshetnyak, and Y. Reznikov, “Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals,” JOSA B, 24, N7, 1512, (2007).
[Crossref]

M. Kaczmarek, A. Dyadyusha, O. Buchnev, Yu. Reznikov, and V. Yu Reshetnyak, “Improved photorefractive response in liquid crystals with ferroelectric nanoparticles,” Nonlinear Opt., Quantum Opt. 35, 217 (2006).

Evans, D. R.

D. R. Evans and G. Cook, “Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids,” J. Nonlinear Opt. Phys. Mat.,  16, 271 (2007).
[Crossref]

G. Cook, J. L. Carns, M. A. Saleh, and D. R. Evans, “Substrate induced pre-tilt in hybrid liquid crystal/inorganic photorefractives,” Mol. Cryst. & Liq. Cryst.,  453, 141 (2006).
[Crossref]

R. L. Sutherland, G. Cook, and D. R. Evans, “Determination of large nematic pre-tilt in liquid crystal cells with mechanically rubbed photorefractive Ce:SBN windows,” Opt. Express,  14, 5365 (2006).
[Crossref] [PubMed]

Glushchenko, A.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[Crossref] [PubMed]

Huignard, J.P.

Ida, T.

T. Ohno, D. Suzuki, H. Suzuki, and T. Ida, J. Soc. Powder Technology, 41, 2, 86–91 (2004, in Japanese) and KONA, no. 22, 195 (2004, English translation).
[Crossref]

Jones, D. C.

G. Cook, C. A. Wyres, M. J. Deer, and D. C. Jones, “Hybrid organic-inorganic photorefractives,” SPIE 5213, 63 (2003).
[Crossref]

Kaczmarek, M.

O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Yu Reshetnyak, and Y. Reznikov, “Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals,” JOSA B, 24, N7, 1512, (2007).
[Crossref]

M. Kaczmarek, A. Dyadyusha, O. Buchnev, Yu. Reznikov, and V. Yu Reshetnyak, “Improved photorefractive response in liquid crystals with ferroelectric nanoparticles,” Nonlinear Opt., Quantum Opt. 35, 217 (2006).

Kajzar, F.

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer - nematic liquid crystal hybrid structures,” Opt. Commun. 187, 257 (2001).
[Crossref]

F. Kajzar, S. Bartkiewicz, and A. Miniewicz, “Optical amplification with high gain in hybrid-polymer-liquid-crystal structures,” Appl. Phys. Lett. 74, 2924 (1999).
[Crossref]

Li, F.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[Crossref] [PubMed]

Loiseaux, B.

Matczyszyn, K.

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer - nematic liquid crystal hybrid structures,” Opt. Commun. 187, 257 (2001).
[Crossref]

Miniewicz, A.

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer - nematic liquid crystal hybrid structures,” Opt. Commun. 187, 257 (2001).
[Crossref]

F. Kajzar, S. Bartkiewicz, and A. Miniewicz, “Optical amplification with high gain in hybrid-polymer-liquid-crystal structures,” Appl. Phys. Lett. 74, 2924 (1999).
[Crossref]

Mottram, N. J.

S. P. Palto, N. J. Mottram, and M. A. Osipov, “Flexoelectric instability and a spontaneous chiral-symmetry breaking in a nematic liquid crystal cell with asymmetric boundary conditions,” Phys. Rev. E 75, 061707 (2007).
[Crossref]

Ohno, T.

T. Ohno, D. Suzuki, H. Suzuki, and T. Ida, J. Soc. Powder Technology, 41, 2, 86–91 (2004, in Japanese) and KONA, no. 22, 195 (2004, English translation).
[Crossref]

Osipov, M. A.

S. P. Palto, N. J. Mottram, and M. A. Osipov, “Flexoelectric instability and a spontaneous chiral-symmetry breaking in a nematic liquid crystal cell with asymmetric boundary conditions,” Phys. Rev. E 75, 061707 (2007).
[Crossref]

Palto, S. P.

S. P. Palto, N. J. Mottram, and M. A. Osipov, “Flexoelectric instability and a spontaneous chiral-symmetry breaking in a nematic liquid crystal cell with asymmetric boundary conditions,” Phys. Rev. E 75, 061707 (2007).
[Crossref]

Prost, J.

P. G. De Gennes and J. Prost, “The Physics of Liquid Crystals,” Second edition, Clarendon Press, page 136 (1993).

Reshetnyak, V. Yu

O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Yu Reshetnyak, and Y. Reznikov, “Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals,” JOSA B, 24, N7, 1512, (2007).
[Crossref]

M. Kaczmarek, A. Dyadyusha, O. Buchnev, Yu. Reznikov, and V. Yu Reshetnyak, “Improved photorefractive response in liquid crystals with ferroelectric nanoparticles,” Nonlinear Opt., Quantum Opt. 35, 217 (2006).

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[Crossref] [PubMed]

Reznikov, Y.

O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Yu Reshetnyak, and Y. Reznikov, “Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals,” JOSA B, 24, N7, 1512, (2007).
[Crossref]

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[Crossref] [PubMed]

Reznikov, Yu.

M. Kaczmarek, A. Dyadyusha, O. Buchnev, Yu. Reznikov, and V. Yu Reshetnyak, “Improved photorefractive response in liquid crystals with ferroelectric nanoparticles,” Nonlinear Opt., Quantum Opt. 35, 217 (2006).

Saleh, M. A.

G. Cook, J. L. Carns, M. A. Saleh, and D. R. Evans, “Substrate induced pre-tilt in hybrid liquid crystal/inorganic photorefractives,” Mol. Cryst. & Liq. Cryst.,  453, 141 (2006).
[Crossref]

Sluckin, T. J.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[Crossref] [PubMed]

Sutherland, R. L.

Suzuki, D.

T. Ohno, D. Suzuki, H. Suzuki, and T. Ida, J. Soc. Powder Technology, 41, 2, 86–91 (2004, in Japanese) and KONA, no. 22, 195 (2004, English translation).
[Crossref]

Suzuki, H.

T. Ohno, D. Suzuki, H. Suzuki, and T. Ida, J. Soc. Powder Technology, 41, 2, 86–91 (2004, in Japanese) and KONA, no. 22, 195 (2004, English translation).
[Crossref]

West, J. L.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[Crossref] [PubMed]

Wyres, C. A.

G. Cook, C. A. Wyres, M. J. Deer, and D. C. Jones, “Hybrid organic-inorganic photorefractives,” SPIE 5213, 63 (2003).
[Crossref]

Appl. Phys. Lett. (1)

F. Kajzar, S. Bartkiewicz, and A. Miniewicz, “Optical amplification with high gain in hybrid-polymer-liquid-crystal structures,” Appl. Phys. Lett. 74, 2924 (1999).
[Crossref]

J. Nonlinear Opt. Phys. Mat. (1)

D. R. Evans and G. Cook, “Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids,” J. Nonlinear Opt. Phys. Mat.,  16, 271 (2007).
[Crossref]

JOSA B (1)

O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Yu Reshetnyak, and Y. Reznikov, “Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals,” JOSA B, 24, N7, 1512, (2007).
[Crossref]

Mol. Cryst. & Liq. Cryst. (1)

G. Cook, J. L. Carns, M. A. Saleh, and D. R. Evans, “Substrate induced pre-tilt in hybrid liquid crystal/inorganic photorefractives,” Mol. Cryst. & Liq. Cryst.,  453, 141 (2006).
[Crossref]

Nonlinear Opt., Quantum Opt. (1)

M. Kaczmarek, A. Dyadyusha, O. Buchnev, Yu. Reznikov, and V. Yu Reshetnyak, “Improved photorefractive response in liquid crystals with ferroelectric nanoparticles,” Nonlinear Opt., Quantum Opt. 35, 217 (2006).

Opt. Commun. (1)

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer - nematic liquid crystal hybrid structures,” Opt. Commun. 187, 257 (2001).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. E (1)

S. P. Palto, N. J. Mottram, and M. A. Osipov, “Flexoelectric instability and a spontaneous chiral-symmetry breaking in a nematic liquid crystal cell with asymmetric boundary conditions,” Phys. Rev. E 75, 061707 (2007).
[Crossref]

Phys. Rev. Lett. (1)

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Yu Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[Crossref] [PubMed]

SPIE (1)

G. Cook, C. A. Wyres, M. J. Deer, and D. C. Jones, “Hybrid organic-inorganic photorefractives,” SPIE 5213, 63 (2003).
[Crossref]

Other (2)

P. G. De Gennes and J. Prost, “The Physics of Liquid Crystals,” Second edition, Clarendon Press, page 136 (1993).

T. Ohno, D. Suzuki, H. Suzuki, and T. Ida, J. Soc. Powder Technology, 41, 2, 86–91 (2004, in Japanese) and KONA, no. 22, 195 (2004, English translation).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental arrangement

Fig. 2.
Fig. 2.

BaTiO3 mixture particle sizes and solution morphologies as a function of grinding time.

Fig. 3.
Fig. 3.

Small signal gain coefficient vs. grating spacing for 0.5 weight % TL205/BaTiO3 mixtures with different particle sizes.

Fig. 4.
Fig. 4.

Small signal gain coefficient vs. grating spacing for TL205/BaTiO3 mixtures with 11.6 nm diameter particles with different concentrations.

Fig. 5.
Fig. 5.

Small signal gain coefficient vs. grating spacing for 0.5 weight % TL205/BaTiO3 mixtures for parallel and anti-parallel cell rubbing orientations. Filled points are anti-parallel rubbed data, open points are parallel rubbed data.

Metrics