Abstract

An original all-dielectric design that performs cloaking at 0.58 THz is demonstrated. The cloak consists of radially positioned micrometer-sized ferroelectric cylinders which exhibit under Mie theory a strong magnetic resonance. Full-wave simulations coupled with a field-summation retrieval technique were employed to adjust the rods magnetic plasma frequency; hence, the radial distribution in the permeability of the cloak. The behavior of the complete micro-structured device was simulated and results unambiguously show good reconstruction of the E-field wavefronts behind the cloak with high power transmission. This all-dielectric configuration provides an attractive route for designing cloaking devices at microwave and terahertz frequencies.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Leonhardt, "Optical conforming mapping," Science 312, 1777-1780 (2006).
    [CrossRef] [PubMed]
  2. J. B. Pendry, D. Shurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
    [CrossRef] [PubMed]
  3. D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794-9803 (2006).
    [CrossRef] [PubMed]
  4. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  5. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  6. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
    [CrossRef] [PubMed]
  7. J. B. Pendry, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
    [CrossRef]
  8. M. Perrin, S. Fasquel, T. Decoopman, M. X. Mélique, O. Vanbésien, E. Lheurette, and D. Lippens, "Left-handed electromagnetism obtained via nanostructured metamaterials: comparison with that from microstructured photonic crystals," J. Opt. A, S3-S11 (2005).
    [CrossRef]
  9. V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
    [CrossRef]
  10. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
    [CrossRef] [PubMed]
  11. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with non-magnetic metamaterials," Nat. Photonics 1, 224 - 227 (2007).
    [CrossRef]
  12. S. O'Brien, and J. B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites," J. Phys. 14, 4035-4044 (2002).
  13. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, "Experimental observation of left-handed behavior in an array of standard dielectric resonators," Phys. Rev. Lett. 98, 157403 (2007)
    [CrossRef] [PubMed]
  14. O. Acher, J.-M. Lerat, and N. Malléjac, "Evaluation and illustration of the properties of Metamaterials using field summation," Opt. Express 15, 1096-1106 (2007).
    [CrossRef] [PubMed]
  15. D. R. Smith and J. B. Pendry, "Homogenization of metamaterials by field averaging (invited paper)," J. Opt. Soc. Am. B 23, 391-403 (2006).
    [CrossRef]
  16. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 36621-36621 (2006).
    [CrossRef]

2007 (3)

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with non-magnetic metamaterials," Nat. Photonics 1, 224 - 227 (2007).
[CrossRef]

O. Acher, J.-M. Lerat, and N. Malléjac, "Evaluation and illustration of the properties of Metamaterials using field summation," Opt. Express 15, 1096-1106 (2007).
[CrossRef] [PubMed]

2006 (6)

D. R. Smith and J. B. Pendry, "Homogenization of metamaterials by field averaging (invited paper)," J. Opt. Soc. Am. B 23, 391-403 (2006).
[CrossRef]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 36621-36621 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

U. Leonhardt, "Optical conforming mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Shurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794-9803 (2006).
[CrossRef] [PubMed]

2002 (1)

S. O'Brien, and J. B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites," J. Phys. 14, 4035-4044 (2002).

1999 (1)

J. B. Pendry, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

1987 (2)

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Acher, O.

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with non-magnetic metamaterials," Nat. Photonics 1, 224 - 227 (2007).
[CrossRef]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with non-magnetic metamaterials," Nat. Photonics 1, 224 - 227 (2007).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 36621-36621 (2006).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

John, S.

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with non-magnetic metamaterials," Nat. Photonics 1, 224 - 227 (2007).
[CrossRef]

Leonhardt, U.

U. Leonhardt, "Optical conforming mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

Lerat, J.-M.

Malléjac, N.

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

O'Brien, S.

S. O'Brien, and J. B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites," J. Phys. 14, 4035-4044 (2002).

Pendry, J.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 36621-36621 (2006).
[CrossRef]

Pendry, J. B.

D. R. Smith and J. B. Pendry, "Homogenization of metamaterials by field averaging (invited paper)," J. Opt. Soc. Am. B 23, 391-403 (2006).
[CrossRef]

J. B. Pendry, D. Shurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794-9803 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

S. O'Brien, and J. B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites," J. Phys. 14, 4035-4044 (2002).

J. B. Pendry, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Popa, B. I.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 36621-36621 (2006).
[CrossRef]

Schurig, D.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 36621-36621 (2006).
[CrossRef]

D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794-9803 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with non-magnetic metamaterials," Nat. Photonics 1, 224 - 227 (2007).
[CrossRef]

Shurig, D.

J. B. Pendry, D. Shurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

Smith, D. R.

J. B. Pendry, D. Shurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794-9803 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 36621-36621 (2006).
[CrossRef]

D. R. Smith and J. B. Pendry, "Homogenization of metamaterials by field averaging (invited paper)," J. Opt. Soc. Am. B 23, 391-403 (2006).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. (1)

S. O'Brien, and J. B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites," J. Phys. 14, 4035-4044 (2002).

Nat. Photonics (2)

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with non-magnetic metamaterials," Nat. Photonics 1, 224 - 227 (2007).
[CrossRef]

Opt. Express (2)

Phys. Rev. E (1)

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 36621-36621 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Science (3)

U. Leonhardt, "Optical conforming mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Shurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Other (2)

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, "Experimental observation of left-handed behavior in an array of standard dielectric resonators," Phys. Rev. Lett. 98, 157403 (2007)
[CrossRef] [PubMed]

M. Perrin, S. Fasquel, T. Decoopman, M. X. Mélique, O. Vanbésien, E. Lheurette, and D. Lippens, "Left-handed electromagnetism obtained via nanostructured metamaterials: comparison with that from microstructured photonic crystals," J. Opt. A, S3-S11 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Scattering parameters of a micro-cut BST rod computed using the finite-element solver HFSS. The inset presents the computational cell and applied boundary conditions. The rod displays a permittivity function ε BST = 200-5j (b) Top and bottom view present complex εzz and µyy , respectively, retrieved using a field-summation method. The Mie resonance occurs at 0.527 THz.

Fig. 2.
Fig. 2.

(a) Dependence of the scattering parameters on the BST rod diameter. The diameter was varied between 34 and 40 µm by steps of 1 µm. Corresponding structures are labeled from 1 to 7. (b) Top and bottom view present the real part of εzz and μyy , respectively, retrieved using a field-summation method for our 7 cases. Note that the Mie resonance shifts to lowerfrequencies with increased radii. The vertical dashed line indicates the cloaking operating frequency employed in this work.

Fig. 3.
Fig. 3.

(a) Top view of the computational domain used to simulate the discretized dielectric cloak. The inset presents a 3D rendering of the device which consists of 7 concentric rings of micro-cut BST rods. An ideal copper cylinder was placed at the center to assess the cloaking efficiency. (b) Dependence of the cloak effective parameters (μr , μθ , and εz ) at 0.58 THz on the normalized radius r/a where a is the cloak inner radius and for radii values ranging from a to b = 2a. The dashed line plots the theoretical distribution of the radial permeability given by Eq. 1.

Fig. 4.
Fig. 4.

Steady-state Ez pattern calculated at 0.58 THz for a copper rod without (a) and with a microstructured cloak (b). The plane of observation is located at mid-distance between the bottom and top face of the simulation domain. The wavefronts are well reconstructed behind the cloak without noticeable backscattering. The metallic particle placed at the center of the device is nearly “invisible” to a detector located at the output port. (c) Zoomed view of the field pattern within the cloak. For clarity, the amplitude within the cloak was magnified.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

μ r ( r ) = ( r a r ) 2 ,
μ θ ( r ) = 1 ,
ε z ( r ) = ( b b a ) 2 .

Metrics