Abstract

This paper reports on the relationship between lidar backscatter and the corresponding depolarization ratio for nine types of cloud systems. The data used in this study are the lidar returns measured by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite and the collocated cloud products derived from the observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua satellite. Specifically, the operational MODIS cloud optical thickness and cloud-top pressure products are used to classify cloud types on the basis of the International Satellite Cloud Climatology Project (ISCCP) cloud classification scheme. While the CALIPSO observations provide information for up to 10 cloud layers, in the present study only the uppermost clouds are considered. The layer-averaged attenuated backscatter (γ′) and layer-averaged depolarization ratio (δ) from the CALIPSO measurements show both water- and ice-phase features for global cirrus, cirrostratus, and deep convective cloud classes. Furthermore, we screen both the MODIS and CALIPSO data to eliminate cases in which CALIPSO detected two- or multi-layered clouds. It is shown that low γ′ values corresponding to uppermost thin clouds are largely eliminated in the CALIPSO δγ′ relationship for single-layered clouds. For mid-latitude and polar regions corresponding, respectively, to latitude belts 30°–60° and 60°–90° in both the hemispheres, a mixture of water and ice is also observed in the case of the altostratus class. MODIS cloud phase flags are also used to screen ice clouds. The resultant water clouds flagged by the MODIS algorithm show only water phase feature in the δγ′ relation observed by CALIOP; however, in the case of the ice clouds flagged by the MODIS algorithm, the co-existence of ice- and water-phase clouds is still observed in the CALIPSO δγ′ relationship.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Winker, J. Pelon, and M. P. McCormick, "The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds," Proc. SPIE 4893,1-11 (2003).
    [CrossRef]
  2. M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanré, "Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS)," IEEE Trans. Geosci. Remote Sens. 30, 2-27 (1992).
    [CrossRef]
  3. B. A. Wielicki, E. F. Harrison, R. D. Cess, M. D. King, and D. A. Randall, "Mission to planet earth: Role of clouds and radiation in climate," Bull. Am. Meteorol. Soc. 76, 2125-2153 (1995).
    [CrossRef]
  4. R. M. Schotland, K. Sassen, and R. Stone, "Observations by lidar of linear depolarization ratios by hydrometeors," J. Appl. Meteor. 10, 1011-1017.
  5. K. Sassen, "The polarization lidar technique for cloud research: A review and current assessment," Bull. Am. Meteorol. Soc. 72, 1848-1866 (1991).
    [CrossRef]
  6. M. I. Mishchenko and K. Sassen, "Depolarization of lidar returns by small ice crystals: An application to contrails," Geophys. Res. Lett. 25, 309-312 (1998).
    [CrossRef]
  7. Y. Hu, "Depolarization ratio-effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination," Geophys. Res. Lett. 34, doi:10.1029/2007/GL029584 (2007).
    [CrossRef]
  8. Y. Hu, M. Vaughan, Z. Liu, B. Lin, P. Yang, D. Flittner, B. Hunt, R. Kuehn, J. Huang, D. Wu, S. Rodier, K. Powell, C. Trepte, and D. Winker, "The depolarization - attenuated backscatter relation: CALIPSO lidar measurements vs. theory," Opt. Express 15, 5327-5332 (2007).
    [CrossRef] [PubMed]
  9. W. B. Rossow and R. A. Schiffer, "Advances in understanding clouds from ISCCP," Bull. Am. Meteorol. Soc. 80, 2261-2287 (1999).
    [CrossRef]
  10. M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, "Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS," IEEE Trans. Geosci. Remote Sens. 41, 442-458 (2003).
    [CrossRef]
  11. S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, "The MODIS cloud products: Algorithms and examples from Terra," IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
    [CrossRef]
  12. W. P. Menzel, R. A. Frey, B. A. Baum, and H. Zhang, "Could top properties and cloud phase algorithm theoretical basis document," in MODIS Algorithm theoretical basis document pp. 55. (2006).
  13. M. A. Vaughan, D. M. Winker, and K. A. Powell, "Part 2: Feature Detection and Layer Properties Algorithms," CALIOP Algorithm Theoretical Basis Document PC-SCI-202 Part 2, pp. 87 (2005).
  14. Y. Hu, Z. Liu, D. Winker, M. Vaughan, and V. Noel, "Simple relation between lidar multiple scattering and depolarization for water clouds," Opt. Lett. 31, 1809-1811 (2006).
    [CrossRef] [PubMed]
  15. K. Sassen and Y. Takano, "Parry arc: A polarization lidar, ray tracing, and aircraft case study," Appl. Opt. 39, 6738-6745 (2000).
    [CrossRef]
  16. V. Noel and K. Sassen, "Study of ice crystal orientation in ice clouds from scanning polarization lidar observations," J. Appl. Meteor. 44, 653-664 (2005).
    [CrossRef]
  17. K. Sassen and S. Benson, "A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization," J. Atmos. Sci. 58, 2103-2112 (2001).
    [CrossRef]
  18. H. Chepfer, G. Brogniez, P. Goloub, F. M. Breon, and P. H. Flamant, "Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1," J. Quant. Spectrosc. Radiat. Transfer. 63, 521-543 (1999).
    [CrossRef]
  19. Y. You, G. W. Kattawar, P. Yang, Y. X. Hu, and B. A. Baum, "Sensitivity of depolarized lidar signals to cloud and aerosol particle properties," J. Quant. Spectrosc. Radiat. Transfer. 100, 470-482 (2006).
    [CrossRef]
  20. A. J. Heymsfield, L. M. Miloshevich, A. Slingo, K. Sassen and D. O. Starr, "An observational and theoretical study of highly supercooled altocumulus," J. Atmos. Sci. 48, 923-945 (1991).
    [CrossRef]
  21. P. R. Field, "Aircraft observations of ice crystal evolution in an altostratus cloud," J. Atmos. Sci. 56, 1925-1941 (1999).
    [CrossRef]
  22. R. P. Fleishauer, V. E. Larson, and T. H. Vonder Haar, "Observed microphysical structure of midlevel, mixed-phase clouds," J. Atmos. Sci. 59, 1779-1804 (2002).
    [CrossRef]
  23. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, "Optical properties of the atmosphere," (third edition) AFCRL-72-0497, Air Force Cambridge Research Laboratories (1972).
  24. C. M. Naud, B. A. Baum, M. Pavolonis, A. Heidinger, R. Frey, and H. Zhang, "Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap," Remote Sens. Environ. 107, 200-210 (2007).
    [CrossRef]
  25. R. T. Marchand, T. P. Ackerman, and C. Moroney, "An assessment of Multiangle Imaging Spectroradiometer (MISR) stereo-derived cloud top heights and cloud top winds using ground-based radar, lidar, and microwave radiometers," J. Geophys. Res. 112, D06204, doi:10.1029/2006JD007091 (2007).
    [CrossRef]
  26. E. Weisz, J. Li, W. P. Menzel, A. K. Heidinger, and B. H. Kahn, "Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals," Geophys. Res. Lett. 34, L17811 (2007).
    [CrossRef]
  27. G. M. McFarquar and A. J. Heymsfield, "Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific Experiment," J. Atmos. Sci. 53, 2401-2423 (1996).
    [CrossRef]
  28. A. J. Heymsfield and J. Iaquinta, "Cirrus Crystal Terminal Velocities," J. Atmos. Sci. 57, 916-938 (2000).
    [CrossRef]
  29. S. G. Cober, G. A. Isaac, A. V. Korolev, and J. W. Strapp, "Assessing cloud phase conditions," J. Appl. Meteorol. 40, 1967-1764 (2001).
    [CrossRef]

2007 (5)

Y. Hu, "Depolarization ratio-effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination," Geophys. Res. Lett. 34, doi:10.1029/2007/GL029584 (2007).
[CrossRef]

C. M. Naud, B. A. Baum, M. Pavolonis, A. Heidinger, R. Frey, and H. Zhang, "Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap," Remote Sens. Environ. 107, 200-210 (2007).
[CrossRef]

R. T. Marchand, T. P. Ackerman, and C. Moroney, "An assessment of Multiangle Imaging Spectroradiometer (MISR) stereo-derived cloud top heights and cloud top winds using ground-based radar, lidar, and microwave radiometers," J. Geophys. Res. 112, D06204, doi:10.1029/2006JD007091 (2007).
[CrossRef]

E. Weisz, J. Li, W. P. Menzel, A. K. Heidinger, and B. H. Kahn, "Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals," Geophys. Res. Lett. 34, L17811 (2007).
[CrossRef]

Y. Hu, M. Vaughan, Z. Liu, B. Lin, P. Yang, D. Flittner, B. Hunt, R. Kuehn, J. Huang, D. Wu, S. Rodier, K. Powell, C. Trepte, and D. Winker, "The depolarization - attenuated backscatter relation: CALIPSO lidar measurements vs. theory," Opt. Express 15, 5327-5332 (2007).
[CrossRef] [PubMed]

2006 (2)

Y. Hu, Z. Liu, D. Winker, M. Vaughan, and V. Noel, "Simple relation between lidar multiple scattering and depolarization for water clouds," Opt. Lett. 31, 1809-1811 (2006).
[CrossRef] [PubMed]

Y. You, G. W. Kattawar, P. Yang, Y. X. Hu, and B. A. Baum, "Sensitivity of depolarized lidar signals to cloud and aerosol particle properties," J. Quant. Spectrosc. Radiat. Transfer. 100, 470-482 (2006).
[CrossRef]

2005 (2)

M. A. Vaughan, D. M. Winker, and K. A. Powell, "Part 2: Feature Detection and Layer Properties Algorithms," CALIOP Algorithm Theoretical Basis Document PC-SCI-202 Part 2, pp. 87 (2005).

V. Noel and K. Sassen, "Study of ice crystal orientation in ice clouds from scanning polarization lidar observations," J. Appl. Meteor. 44, 653-664 (2005).
[CrossRef]

2003 (3)

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, "Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS," IEEE Trans. Geosci. Remote Sens. 41, 442-458 (2003).
[CrossRef]

S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, "The MODIS cloud products: Algorithms and examples from Terra," IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
[CrossRef]

D. M. Winker, J. Pelon, and M. P. McCormick, "The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds," Proc. SPIE 4893,1-11 (2003).
[CrossRef]

2002 (1)

R. P. Fleishauer, V. E. Larson, and T. H. Vonder Haar, "Observed microphysical structure of midlevel, mixed-phase clouds," J. Atmos. Sci. 59, 1779-1804 (2002).
[CrossRef]

2001 (2)

S. G. Cober, G. A. Isaac, A. V. Korolev, and J. W. Strapp, "Assessing cloud phase conditions," J. Appl. Meteorol. 40, 1967-1764 (2001).
[CrossRef]

K. Sassen and S. Benson, "A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization," J. Atmos. Sci. 58, 2103-2112 (2001).
[CrossRef]

2000 (2)

K. Sassen and Y. Takano, "Parry arc: A polarization lidar, ray tracing, and aircraft case study," Appl. Opt. 39, 6738-6745 (2000).
[CrossRef]

A. J. Heymsfield and J. Iaquinta, "Cirrus Crystal Terminal Velocities," J. Atmos. Sci. 57, 916-938 (2000).
[CrossRef]

1999 (3)

H. Chepfer, G. Brogniez, P. Goloub, F. M. Breon, and P. H. Flamant, "Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1," J. Quant. Spectrosc. Radiat. Transfer. 63, 521-543 (1999).
[CrossRef]

P. R. Field, "Aircraft observations of ice crystal evolution in an altostratus cloud," J. Atmos. Sci. 56, 1925-1941 (1999).
[CrossRef]

W. B. Rossow and R. A. Schiffer, "Advances in understanding clouds from ISCCP," Bull. Am. Meteorol. Soc. 80, 2261-2287 (1999).
[CrossRef]

1998 (1)

M. I. Mishchenko and K. Sassen, "Depolarization of lidar returns by small ice crystals: An application to contrails," Geophys. Res. Lett. 25, 309-312 (1998).
[CrossRef]

1996 (1)

G. M. McFarquar and A. J. Heymsfield, "Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific Experiment," J. Atmos. Sci. 53, 2401-2423 (1996).
[CrossRef]

1995 (1)

B. A. Wielicki, E. F. Harrison, R. D. Cess, M. D. King, and D. A. Randall, "Mission to planet earth: Role of clouds and radiation in climate," Bull. Am. Meteorol. Soc. 76, 2125-2153 (1995).
[CrossRef]

1992 (1)

M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanré, "Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS)," IEEE Trans. Geosci. Remote Sens. 30, 2-27 (1992).
[CrossRef]

1991 (2)

K. Sassen, "The polarization lidar technique for cloud research: A review and current assessment," Bull. Am. Meteorol. Soc. 72, 1848-1866 (1991).
[CrossRef]

A. J. Heymsfield, L. M. Miloshevich, A. Slingo, K. Sassen and D. O. Starr, "An observational and theoretical study of highly supercooled altocumulus," J. Atmos. Sci. 48, 923-945 (1991).
[CrossRef]

Ackerman, S. A.

S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, "The MODIS cloud products: Algorithms and examples from Terra," IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
[CrossRef]

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, "Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS," IEEE Trans. Geosci. Remote Sens. 41, 442-458 (2003).
[CrossRef]

Ackerman, T. P.

R. T. Marchand, T. P. Ackerman, and C. Moroney, "An assessment of Multiangle Imaging Spectroradiometer (MISR) stereo-derived cloud top heights and cloud top winds using ground-based radar, lidar, and microwave radiometers," J. Geophys. Res. 112, D06204, doi:10.1029/2006JD007091 (2007).
[CrossRef]

Baum, B. A.

C. M. Naud, B. A. Baum, M. Pavolonis, A. Heidinger, R. Frey, and H. Zhang, "Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap," Remote Sens. Environ. 107, 200-210 (2007).
[CrossRef]

Y. You, G. W. Kattawar, P. Yang, Y. X. Hu, and B. A. Baum, "Sensitivity of depolarized lidar signals to cloud and aerosol particle properties," J. Quant. Spectrosc. Radiat. Transfer. 100, 470-482 (2006).
[CrossRef]

S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, "The MODIS cloud products: Algorithms and examples from Terra," IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
[CrossRef]

Benson, S.

K. Sassen and S. Benson, "A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization," J. Atmos. Sci. 58, 2103-2112 (2001).
[CrossRef]

Breon, F. M.

H. Chepfer, G. Brogniez, P. Goloub, F. M. Breon, and P. H. Flamant, "Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1," J. Quant. Spectrosc. Radiat. Transfer. 63, 521-543 (1999).
[CrossRef]

Brogniez, G.

H. Chepfer, G. Brogniez, P. Goloub, F. M. Breon, and P. H. Flamant, "Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1," J. Quant. Spectrosc. Radiat. Transfer. 63, 521-543 (1999).
[CrossRef]

Cess, R. D.

B. A. Wielicki, E. F. Harrison, R. D. Cess, M. D. King, and D. A. Randall, "Mission to planet earth: Role of clouds and radiation in climate," Bull. Am. Meteorol. Soc. 76, 2125-2153 (1995).
[CrossRef]

Chepfer, H.

H. Chepfer, G. Brogniez, P. Goloub, F. M. Breon, and P. H. Flamant, "Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1," J. Quant. Spectrosc. Radiat. Transfer. 63, 521-543 (1999).
[CrossRef]

Cober, S. G.

S. G. Cober, G. A. Isaac, A. V. Korolev, and J. W. Strapp, "Assessing cloud phase conditions," J. Appl. Meteorol. 40, 1967-1764 (2001).
[CrossRef]

Field, P. R.

P. R. Field, "Aircraft observations of ice crystal evolution in an altostratus cloud," J. Atmos. Sci. 56, 1925-1941 (1999).
[CrossRef]

Flamant, P. H.

H. Chepfer, G. Brogniez, P. Goloub, F. M. Breon, and P. H. Flamant, "Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1," J. Quant. Spectrosc. Radiat. Transfer. 63, 521-543 (1999).
[CrossRef]

Fleishauer, R. P.

R. P. Fleishauer, V. E. Larson, and T. H. Vonder Haar, "Observed microphysical structure of midlevel, mixed-phase clouds," J. Atmos. Sci. 59, 1779-1804 (2002).
[CrossRef]

Flittner, D.

Frey, R.

C. M. Naud, B. A. Baum, M. Pavolonis, A. Heidinger, R. Frey, and H. Zhang, "Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap," Remote Sens. Environ. 107, 200-210 (2007).
[CrossRef]

Frey, R. A.

S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, "The MODIS cloud products: Algorithms and examples from Terra," IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
[CrossRef]

Gao, B.-C.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, "Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS," IEEE Trans. Geosci. Remote Sens. 41, 442-458 (2003).
[CrossRef]

Goloub, P.

H. Chepfer, G. Brogniez, P. Goloub, F. M. Breon, and P. H. Flamant, "Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1," J. Quant. Spectrosc. Radiat. Transfer. 63, 521-543 (1999).
[CrossRef]

Harrison, E. F.

B. A. Wielicki, E. F. Harrison, R. D. Cess, M. D. King, and D. A. Randall, "Mission to planet earth: Role of clouds and radiation in climate," Bull. Am. Meteorol. Soc. 76, 2125-2153 (1995).
[CrossRef]

Heidinger, A.

C. M. Naud, B. A. Baum, M. Pavolonis, A. Heidinger, R. Frey, and H. Zhang, "Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap," Remote Sens. Environ. 107, 200-210 (2007).
[CrossRef]

Heidinger, A. K.

E. Weisz, J. Li, W. P. Menzel, A. K. Heidinger, and B. H. Kahn, "Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals," Geophys. Res. Lett. 34, L17811 (2007).
[CrossRef]

Heymsfield, A. J.

A. J. Heymsfield and J. Iaquinta, "Cirrus Crystal Terminal Velocities," J. Atmos. Sci. 57, 916-938 (2000).
[CrossRef]

G. M. McFarquar and A. J. Heymsfield, "Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific Experiment," J. Atmos. Sci. 53, 2401-2423 (1996).
[CrossRef]

A. J. Heymsfield, L. M. Miloshevich, A. Slingo, K. Sassen and D. O. Starr, "An observational and theoretical study of highly supercooled altocumulus," J. Atmos. Sci. 48, 923-945 (1991).
[CrossRef]

Hu, Y.

Hu, Y. X.

Y. You, G. W. Kattawar, P. Yang, Y. X. Hu, and B. A. Baum, "Sensitivity of depolarized lidar signals to cloud and aerosol particle properties," J. Quant. Spectrosc. Radiat. Transfer. 100, 470-482 (2006).
[CrossRef]

Huang, J.

Hubanks, P. A.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, "Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS," IEEE Trans. Geosci. Remote Sens. 41, 442-458 (2003).
[CrossRef]

Hunt, B.

Iaquinta, J.

A. J. Heymsfield and J. Iaquinta, "Cirrus Crystal Terminal Velocities," J. Atmos. Sci. 57, 916-938 (2000).
[CrossRef]

Isaac, G. A.

S. G. Cober, G. A. Isaac, A. V. Korolev, and J. W. Strapp, "Assessing cloud phase conditions," J. Appl. Meteorol. 40, 1967-1764 (2001).
[CrossRef]

Kahn, B. H.

E. Weisz, J. Li, W. P. Menzel, A. K. Heidinger, and B. H. Kahn, "Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals," Geophys. Res. Lett. 34, L17811 (2007).
[CrossRef]

Kattawar, G. W.

Y. You, G. W. Kattawar, P. Yang, Y. X. Hu, and B. A. Baum, "Sensitivity of depolarized lidar signals to cloud and aerosol particle properties," J. Quant. Spectrosc. Radiat. Transfer. 100, 470-482 (2006).
[CrossRef]

Kaufman, Y. J.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, "Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS," IEEE Trans. Geosci. Remote Sens. 41, 442-458 (2003).
[CrossRef]

M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanré, "Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS)," IEEE Trans. Geosci. Remote Sens. 30, 2-27 (1992).
[CrossRef]

King, M. D.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, "Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS," IEEE Trans. Geosci. Remote Sens. 41, 442-458 (2003).
[CrossRef]

S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, "The MODIS cloud products: Algorithms and examples from Terra," IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
[CrossRef]

B. A. Wielicki, E. F. Harrison, R. D. Cess, M. D. King, and D. A. Randall, "Mission to planet earth: Role of clouds and radiation in climate," Bull. Am. Meteorol. Soc. 76, 2125-2153 (1995).
[CrossRef]

M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanré, "Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS)," IEEE Trans. Geosci. Remote Sens. 30, 2-27 (1992).
[CrossRef]

Korolev, A. V.

S. G. Cober, G. A. Isaac, A. V. Korolev, and J. W. Strapp, "Assessing cloud phase conditions," J. Appl. Meteorol. 40, 1967-1764 (2001).
[CrossRef]

Kuehn, R.

Larson, V. E.

R. P. Fleishauer, V. E. Larson, and T. H. Vonder Haar, "Observed microphysical structure of midlevel, mixed-phase clouds," J. Atmos. Sci. 59, 1779-1804 (2002).
[CrossRef]

Li, J.

E. Weisz, J. Li, W. P. Menzel, A. K. Heidinger, and B. H. Kahn, "Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals," Geophys. Res. Lett. 34, L17811 (2007).
[CrossRef]

Lin, B.

Liu, Z.

Marchand, R. T.

R. T. Marchand, T. P. Ackerman, and C. Moroney, "An assessment of Multiangle Imaging Spectroradiometer (MISR) stereo-derived cloud top heights and cloud top winds using ground-based radar, lidar, and microwave radiometers," J. Geophys. Res. 112, D06204, doi:10.1029/2006JD007091 (2007).
[CrossRef]

McCormick, M. P.

D. M. Winker, J. Pelon, and M. P. McCormick, "The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds," Proc. SPIE 4893,1-11 (2003).
[CrossRef]

McFarquar, G. M.

G. M. McFarquar and A. J. Heymsfield, "Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific Experiment," J. Atmos. Sci. 53, 2401-2423 (1996).
[CrossRef]

Menzel, W. P.

E. Weisz, J. Li, W. P. Menzel, A. K. Heidinger, and B. H. Kahn, "Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals," Geophys. Res. Lett. 34, L17811 (2007).
[CrossRef]

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, "Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS," IEEE Trans. Geosci. Remote Sens. 41, 442-458 (2003).
[CrossRef]

S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, "The MODIS cloud products: Algorithms and examples from Terra," IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
[CrossRef]

M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanré, "Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS)," IEEE Trans. Geosci. Remote Sens. 30, 2-27 (1992).
[CrossRef]

Miloshevich, L. M.

A. J. Heymsfield, L. M. Miloshevich, A. Slingo, K. Sassen and D. O. Starr, "An observational and theoretical study of highly supercooled altocumulus," J. Atmos. Sci. 48, 923-945 (1991).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko and K. Sassen, "Depolarization of lidar returns by small ice crystals: An application to contrails," Geophys. Res. Lett. 25, 309-312 (1998).
[CrossRef]

Moroney, C.

R. T. Marchand, T. P. Ackerman, and C. Moroney, "An assessment of Multiangle Imaging Spectroradiometer (MISR) stereo-derived cloud top heights and cloud top winds using ground-based radar, lidar, and microwave radiometers," J. Geophys. Res. 112, D06204, doi:10.1029/2006JD007091 (2007).
[CrossRef]

Naud, C. M.

C. M. Naud, B. A. Baum, M. Pavolonis, A. Heidinger, R. Frey, and H. Zhang, "Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap," Remote Sens. Environ. 107, 200-210 (2007).
[CrossRef]

Noel, V.

Y. Hu, Z. Liu, D. Winker, M. Vaughan, and V. Noel, "Simple relation between lidar multiple scattering and depolarization for water clouds," Opt. Lett. 31, 1809-1811 (2006).
[CrossRef] [PubMed]

V. Noel and K. Sassen, "Study of ice crystal orientation in ice clouds from scanning polarization lidar observations," J. Appl. Meteor. 44, 653-664 (2005).
[CrossRef]

Pavolonis, M.

C. M. Naud, B. A. Baum, M. Pavolonis, A. Heidinger, R. Frey, and H. Zhang, "Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap," Remote Sens. Environ. 107, 200-210 (2007).
[CrossRef]

Pelon, J.

D. M. Winker, J. Pelon, and M. P. McCormick, "The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds," Proc. SPIE 4893,1-11 (2003).
[CrossRef]

Pincus, R.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, "Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS," IEEE Trans. Geosci. Remote Sens. 41, 442-458 (2003).
[CrossRef]

Platnick, S.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, "Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS," IEEE Trans. Geosci. Remote Sens. 41, 442-458 (2003).
[CrossRef]

S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, "The MODIS cloud products: Algorithms and examples from Terra," IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
[CrossRef]

Powell, K.

Powell, K. A.

M. A. Vaughan, D. M. Winker, and K. A. Powell, "Part 2: Feature Detection and Layer Properties Algorithms," CALIOP Algorithm Theoretical Basis Document PC-SCI-202 Part 2, pp. 87 (2005).

Randall, D. A.

B. A. Wielicki, E. F. Harrison, R. D. Cess, M. D. King, and D. A. Randall, "Mission to planet earth: Role of clouds and radiation in climate," Bull. Am. Meteorol. Soc. 76, 2125-2153 (1995).
[CrossRef]

Remer, L. A.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, "Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS," IEEE Trans. Geosci. Remote Sens. 41, 442-458 (2003).
[CrossRef]

Riédi, J. C.

S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, "The MODIS cloud products: Algorithms and examples from Terra," IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
[CrossRef]

Rodier, S.

Rossow, W. B.

W. B. Rossow and R. A. Schiffer, "Advances in understanding clouds from ISCCP," Bull. Am. Meteorol. Soc. 80, 2261-2287 (1999).
[CrossRef]

Sassen, K.

V. Noel and K. Sassen, "Study of ice crystal orientation in ice clouds from scanning polarization lidar observations," J. Appl. Meteor. 44, 653-664 (2005).
[CrossRef]

K. Sassen and S. Benson, "A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization," J. Atmos. Sci. 58, 2103-2112 (2001).
[CrossRef]

K. Sassen and Y. Takano, "Parry arc: A polarization lidar, ray tracing, and aircraft case study," Appl. Opt. 39, 6738-6745 (2000).
[CrossRef]

M. I. Mishchenko and K. Sassen, "Depolarization of lidar returns by small ice crystals: An application to contrails," Geophys. Res. Lett. 25, 309-312 (1998).
[CrossRef]

K. Sassen, "The polarization lidar technique for cloud research: A review and current assessment," Bull. Am. Meteorol. Soc. 72, 1848-1866 (1991).
[CrossRef]

A. J. Heymsfield, L. M. Miloshevich, A. Slingo, K. Sassen and D. O. Starr, "An observational and theoretical study of highly supercooled altocumulus," J. Atmos. Sci. 48, 923-945 (1991).
[CrossRef]

R. M. Schotland, K. Sassen, and R. Stone, "Observations by lidar of linear depolarization ratios by hydrometeors," J. Appl. Meteor. 10, 1011-1017.

Schiffer, R. A.

W. B. Rossow and R. A. Schiffer, "Advances in understanding clouds from ISCCP," Bull. Am. Meteorol. Soc. 80, 2261-2287 (1999).
[CrossRef]

Schotland, R. M.

R. M. Schotland, K. Sassen, and R. Stone, "Observations by lidar of linear depolarization ratios by hydrometeors," J. Appl. Meteor. 10, 1011-1017.

Slingo, A.

A. J. Heymsfield, L. M. Miloshevich, A. Slingo, K. Sassen and D. O. Starr, "An observational and theoretical study of highly supercooled altocumulus," J. Atmos. Sci. 48, 923-945 (1991).
[CrossRef]

Starr, D. O.

A. J. Heymsfield, L. M. Miloshevich, A. Slingo, K. Sassen and D. O. Starr, "An observational and theoretical study of highly supercooled altocumulus," J. Atmos. Sci. 48, 923-945 (1991).
[CrossRef]

Stone, R.

R. M. Schotland, K. Sassen, and R. Stone, "Observations by lidar of linear depolarization ratios by hydrometeors," J. Appl. Meteor. 10, 1011-1017.

Strapp, J. W.

S. G. Cober, G. A. Isaac, A. V. Korolev, and J. W. Strapp, "Assessing cloud phase conditions," J. Appl. Meteorol. 40, 1967-1764 (2001).
[CrossRef]

Takano, Y.

Tanre, D.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, "Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS," IEEE Trans. Geosci. Remote Sens. 41, 442-458 (2003).
[CrossRef]

Tanré, D.

M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanré, "Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS)," IEEE Trans. Geosci. Remote Sens. 30, 2-27 (1992).
[CrossRef]

Trepte, C.

Vaughan, M.

Vaughan, M. A.

M. A. Vaughan, D. M. Winker, and K. A. Powell, "Part 2: Feature Detection and Layer Properties Algorithms," CALIOP Algorithm Theoretical Basis Document PC-SCI-202 Part 2, pp. 87 (2005).

Vonder Haar, T. H.

R. P. Fleishauer, V. E. Larson, and T. H. Vonder Haar, "Observed microphysical structure of midlevel, mixed-phase clouds," J. Atmos. Sci. 59, 1779-1804 (2002).
[CrossRef]

Weisz, E.

E. Weisz, J. Li, W. P. Menzel, A. K. Heidinger, and B. H. Kahn, "Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals," Geophys. Res. Lett. 34, L17811 (2007).
[CrossRef]

Wielicki, B. A.

B. A. Wielicki, E. F. Harrison, R. D. Cess, M. D. King, and D. A. Randall, "Mission to planet earth: Role of clouds and radiation in climate," Bull. Am. Meteorol. Soc. 76, 2125-2153 (1995).
[CrossRef]

Winker, D.

Winker, D. M.

M. A. Vaughan, D. M. Winker, and K. A. Powell, "Part 2: Feature Detection and Layer Properties Algorithms," CALIOP Algorithm Theoretical Basis Document PC-SCI-202 Part 2, pp. 87 (2005).

D. M. Winker, J. Pelon, and M. P. McCormick, "The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds," Proc. SPIE 4893,1-11 (2003).
[CrossRef]

Wu, D.

Yang, P.

Y. Hu, M. Vaughan, Z. Liu, B. Lin, P. Yang, D. Flittner, B. Hunt, R. Kuehn, J. Huang, D. Wu, S. Rodier, K. Powell, C. Trepte, and D. Winker, "The depolarization - attenuated backscatter relation: CALIPSO lidar measurements vs. theory," Opt. Express 15, 5327-5332 (2007).
[CrossRef] [PubMed]

Y. You, G. W. Kattawar, P. Yang, Y. X. Hu, and B. A. Baum, "Sensitivity of depolarized lidar signals to cloud and aerosol particle properties," J. Quant. Spectrosc. Radiat. Transfer. 100, 470-482 (2006).
[CrossRef]

You, Y.

Y. You, G. W. Kattawar, P. Yang, Y. X. Hu, and B. A. Baum, "Sensitivity of depolarized lidar signals to cloud and aerosol particle properties," J. Quant. Spectrosc. Radiat. Transfer. 100, 470-482 (2006).
[CrossRef]

Zhang, H.

C. M. Naud, B. A. Baum, M. Pavolonis, A. Heidinger, R. Frey, and H. Zhang, "Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap," Remote Sens. Environ. 107, 200-210 (2007).
[CrossRef]

Appl. Opt. (1)

Bull. Am. Meteorol. Soc. (3)

W. B. Rossow and R. A. Schiffer, "Advances in understanding clouds from ISCCP," Bull. Am. Meteorol. Soc. 80, 2261-2287 (1999).
[CrossRef]

B. A. Wielicki, E. F. Harrison, R. D. Cess, M. D. King, and D. A. Randall, "Mission to planet earth: Role of clouds and radiation in climate," Bull. Am. Meteorol. Soc. 76, 2125-2153 (1995).
[CrossRef]

K. Sassen, "The polarization lidar technique for cloud research: A review and current assessment," Bull. Am. Meteorol. Soc. 72, 1848-1866 (1991).
[CrossRef]

CALIOP Algorithm Theoretical Basis Document PC-SCI (1)

M. A. Vaughan, D. M. Winker, and K. A. Powell, "Part 2: Feature Detection and Layer Properties Algorithms," CALIOP Algorithm Theoretical Basis Document PC-SCI-202 Part 2, pp. 87 (2005).

Geophys. Res. Lett. (3)

E. Weisz, J. Li, W. P. Menzel, A. K. Heidinger, and B. H. Kahn, "Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals," Geophys. Res. Lett. 34, L17811 (2007).
[CrossRef]

M. I. Mishchenko and K. Sassen, "Depolarization of lidar returns by small ice crystals: An application to contrails," Geophys. Res. Lett. 25, 309-312 (1998).
[CrossRef]

Y. Hu, "Depolarization ratio-effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination," Geophys. Res. Lett. 34, doi:10.1029/2007/GL029584 (2007).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (3)

M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanré, "Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS)," IEEE Trans. Geosci. Remote Sens. 30, 2-27 (1992).
[CrossRef]

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, "Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS," IEEE Trans. Geosci. Remote Sens. 41, 442-458 (2003).
[CrossRef]

S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, "The MODIS cloud products: Algorithms and examples from Terra," IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
[CrossRef]

J. Appl. Meteor. (2)

V. Noel and K. Sassen, "Study of ice crystal orientation in ice clouds from scanning polarization lidar observations," J. Appl. Meteor. 44, 653-664 (2005).
[CrossRef]

R. M. Schotland, K. Sassen, and R. Stone, "Observations by lidar of linear depolarization ratios by hydrometeors," J. Appl. Meteor. 10, 1011-1017.

J. Appl. Meteorol. (1)

S. G. Cober, G. A. Isaac, A. V. Korolev, and J. W. Strapp, "Assessing cloud phase conditions," J. Appl. Meteorol. 40, 1967-1764 (2001).
[CrossRef]

J. Atmos. Sci. (6)

G. M. McFarquar and A. J. Heymsfield, "Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific Experiment," J. Atmos. Sci. 53, 2401-2423 (1996).
[CrossRef]

A. J. Heymsfield and J. Iaquinta, "Cirrus Crystal Terminal Velocities," J. Atmos. Sci. 57, 916-938 (2000).
[CrossRef]

A. J. Heymsfield, L. M. Miloshevich, A. Slingo, K. Sassen and D. O. Starr, "An observational and theoretical study of highly supercooled altocumulus," J. Atmos. Sci. 48, 923-945 (1991).
[CrossRef]

P. R. Field, "Aircraft observations of ice crystal evolution in an altostratus cloud," J. Atmos. Sci. 56, 1925-1941 (1999).
[CrossRef]

R. P. Fleishauer, V. E. Larson, and T. H. Vonder Haar, "Observed microphysical structure of midlevel, mixed-phase clouds," J. Atmos. Sci. 59, 1779-1804 (2002).
[CrossRef]

K. Sassen and S. Benson, "A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization," J. Atmos. Sci. 58, 2103-2112 (2001).
[CrossRef]

J. Geophys. Res. (1)

R. T. Marchand, T. P. Ackerman, and C. Moroney, "An assessment of Multiangle Imaging Spectroradiometer (MISR) stereo-derived cloud top heights and cloud top winds using ground-based radar, lidar, and microwave radiometers," J. Geophys. Res. 112, D06204, doi:10.1029/2006JD007091 (2007).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer. (2)

H. Chepfer, G. Brogniez, P. Goloub, F. M. Breon, and P. H. Flamant, "Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1," J. Quant. Spectrosc. Radiat. Transfer. 63, 521-543 (1999).
[CrossRef]

Y. You, G. W. Kattawar, P. Yang, Y. X. Hu, and B. A. Baum, "Sensitivity of depolarized lidar signals to cloud and aerosol particle properties," J. Quant. Spectrosc. Radiat. Transfer. 100, 470-482 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

D. M. Winker, J. Pelon, and M. P. McCormick, "The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds," Proc. SPIE 4893,1-11 (2003).
[CrossRef]

Remote Sens. Environ. (1)

C. M. Naud, B. A. Baum, M. Pavolonis, A. Heidinger, R. Frey, and H. Zhang, "Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap," Remote Sens. Environ. 107, 200-210 (2007).
[CrossRef]

Other (2)

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, "Optical properties of the atmosphere," (third edition) AFCRL-72-0497, Air Force Cambridge Research Laboratories (1972).

W. P. Menzel, R. A. Frey, B. A. Baum, and H. Zhang, "Could top properties and cloud phase algorithm theoretical basis document," in MODIS Algorithm theoretical basis document pp. 55. (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Schematic curves showing the relationships (Hu et al. [8]) between the layer-integrated depolarization ratio and layer-integrated attenuated backscatter coefficient for ice clouds (solid line) and water clouds (dashed line).

Fig. 2.
Fig. 2.

The CALIPSO lidar δγ′ relationships for nine ISCCP cloud types, as classified using MODIS data. Observations are over 12 months, from July 2006 to June 2007. The color of each pixel represents the frequency of occurrence for a Δδ–Δγ′ box with 0.01 by 0.002 sr−1 interval.

Fig. 3.
Fig. 3.

Histogram and normalized frequency of the difference between the MODIS and CALIPSO cloud top pressure retrievals during daytime in the August of 2006.

Fig. 4.
Fig. 4.

Same as Fig. 2 except for single-layer clouds identified from the CALIPSO data.

Fig. 5.
Fig. 5.

The δγ′ relations for nine cloud types in the tropical region from 30°S to 30°N.

Fig. 6.
Fig. 6.

The δγ′ relation for nine cloud types in the midlatitudes (30°S–60°S and 30°N–60°N).

Fig. 7.
Fig. 7.

The δγ′ relationships for clouds in the polar regions (60°S–90°S and 60°N–90°N).

Fig. 8.
Fig. 8.

The δγ′ relationships with respect to cloud top temperature obtained by MODIS cloud retrievals for single-layer clouds identified from the CALIPSO data.

Fig. 9.
Fig. 9.

The δγ′ relationships for the clouds flagged as in water-phase by the MODIS IR cloud-phase determination algorithm [12].

Fig. 10.
Fig. 10.

The δγ′ relationship for the clouds flagged as in ice-phase by the MODIS IR cloud-phase determination algorithm [12].

Fig. 11.
Fig. 11.

The δγ′ relationship for clouds flagged as in mixed- or uncertain-phase by the MODIS IR cloud-phase determination algorithm.

Fig. 12.
Fig. 12.

The δγ′ relationship for clouds flagged as water-phase by the MODIS cloud property retrieval processing path (RPP) phase determination algorithm.

Fig. 13.
Fig. 13.

The δγ′ relationship for clouds flagged as ice-phase by the MODIS RPP phase determination algorithm.

Fig. 14.
Fig. 14.

The δγ′ relationship for clouds flagged as undetermined-phase by the MODIS RPP phase determination algorithm.

Fig. 15
Fig. 15

Same as Fig. 9 except for single-layer clouds identified from the CALIPSO data.

Fig. 16.
Fig. 16.

Same as Fig. 10 except for single-layer clouds identified from the CALIPSO data.

Fig. 17.
Fig. 17.

Same as Fig. 11 except for single-layer clouds identified from the CALIPSO data.

Tables (1)

Tables Icon

Table 1. Statistics of the differences between the MODIS and CALIPSO cloud-top pressure retrievals.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ = top base β ( z ) dz top base β ( z ) dz ,
γ = top base [ β ( z ) + β ( z ) ] dz ,
MPD = 1 N i = 0 N ( P i , MODIS P i , CALIPSO ) ,
SD = 1 N 1 i = 0 N ( ( P i , MODIS P i , CALIPSO ) MPD ) 2 ,

Metrics