Abstract

A new semiconductor laser structure with digitally switchable wavelength is proposed. The device comprises two coupled c.avities with different optical path lengths, which form V-shaped branches with a reflective 2 × 2 half-wave optical coupler at the closed end. The reflective 2 × 2 coupler is designed to have a π-phase difference between cross-coupling and self-coupling so as to produce synchronous power transfer functions. High single-mode selectivity is achieved by optimizing the coupling coefficient. The switchable wavelength range is greatly increased by using Vernier effect. Using deep-etched trenches as partial reflectors, additional waveguide branch structures are used outside the laser cavities to form a complete Mach-Zehnder interferometer, allowing space switching, variable attenuation, or high speed modulation to be realized simultaneously. Detailed design principle and numerical results are presented.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Raring and L. A. Coldren, "40Gb/s Widely-Tunable Transceivers," invited paper, IEEE J. Sel. Top. Quantum Electron. 13, 3-14 (2007).
    [CrossRef]
  2. N. P. Caponio, M. Goano, I. Maio, M. Meliga, G. P. Bava, G. D. Anis, and I. Montrosset, "Analysis and Design criteria of Three-Section DBR Tunable Lasers," IEEE J. Sel. Areas Commun. 8, 1203-1213 (1990).
    [CrossRef]
  3. V. Jayaraman, A. Mathur, and L. A Coldren, "Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
    [CrossRef]
  4. L. A. Coldren, "Monolithic Tunable Diode Lasers," IEEE J. Sel. Top. Quantum Electron. 6, 988 (2000).
    [CrossRef]
  5. P. M. Anandarajah, R. Maher, and L. P. Barry,  et al., "Characterization of frequency drift of sampled-grating DBR Laser module under direct modulation," IEEE Photon. Technol. Lett. 20, 239-241 (2008).
    [CrossRef]
  6. Y. Tohmori, Y. Yoshikuni, and H. Ishii, "Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers," IEEE J. Quantum Electron. 29, 1817-1823 (1993).
    [CrossRef]
  7. R. C. Alferness, U. Koren, and L. L. Buhl, "Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range," Appl. Phys. Lett. 60, 3209-3211 (1992).
    [CrossRef]
  8. J.-O. Wesström, G. Sarlet, and S. Hammerfeldt, "State of the art performance of widely tunable modulated grating Y-branch lasers," Optical Fiber Communication Conference, Washington DC, paper TuE2 (2004).
  9. D. J. Robbins, G. Busico, L. Ponnampalam, J. P. Duck, P. J. Williams, R. A. Griffin, A. J. Ward, D. C. J. Reid, N. D. Whitbread, and E. Barton, "A high power, broadband tuneable laser module based on a DS-DBR laser with integrated SOA," Optical Fiber Communication Conference, Washington DC, Paper TuE3 (2004).
  10. L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, "Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive-ion-etching," Appl. Phys. Lett. 38, 315-317 (1981).
    [CrossRef]
  11. W. T. Tsang, "The cleaved-coupled-cavity (C3) laser," Semicond. Semimetals  22, 257 (1985).
    [CrossRef]
  12. L. A. Coldren and T. L. Koch, "Analysis and design of coupled-cavity lasers," IEEE J. Quantum Electron. 20, 659-682 (1984).
    [CrossRef]
  13. T. L. Koch and L. A. Coldren, "Optimum coupling junction and cavity lengths for coupled-cavity semiconductor lasers," J. Appl. Phys. 57, 742-754 (1985).
    [CrossRef]
  14. D. Marcuse, "Coupling coefficients of coupled laser cavities," IEEE J. Quantum Electron. 22, 223-226 (1986).
    [CrossRef]
  15. R. J. Lang and A. Yariv, "An exact formulation of coupled-mode theory for coupled-cavity lasers," IEEE J. Quantum Electron. 24, 66-72 (1988).
    [CrossRef]
  16. O. Hildebrand, M. Schilling, D. Baums,  et al., "The Y-laser: A Multifunctional Device for Optical Communication Systems and Switching Networks," J. Lightwave Technol. 11, 2066-2074 (1993).
    [CrossRef]
  17. M. Kuznetsov, P. Verlangieri, and A. G. Dentai, "Asymmetric Y-Branch Tunable Semiconductor Laser with 1.0 THz Tuning Range," IEEE Photon. Technol. Lett. 4, 1093-1095 (1992).
    [CrossRef]
  18. M. Schilling, K. Diitting, and W. Idler, "Asymmetrical Y laser with simple single current tuning response," Electron. Lett. 28, 1698-1699 (1992).
    [CrossRef]
  19. M. Kuznetsov, "Design of widely tunable semiconductor three-branch lasers," J. Lightwave Technol. 12, 2100-2106 (1994).
    [CrossRef]
  20. T. L. Koch and U. Koren, "Semiconductor Lasers for Coherent Optical Fiber Communications," J. Lightwave Technol. 8, 274-293 (1990).
    [CrossRef]

2008

P. M. Anandarajah, R. Maher, and L. P. Barry,  et al., "Characterization of frequency drift of sampled-grating DBR Laser module under direct modulation," IEEE Photon. Technol. Lett. 20, 239-241 (2008).
[CrossRef]

2007

J. W. Raring and L. A. Coldren, "40Gb/s Widely-Tunable Transceivers," invited paper, IEEE J. Sel. Top. Quantum Electron. 13, 3-14 (2007).
[CrossRef]

2000

L. A. Coldren, "Monolithic Tunable Diode Lasers," IEEE J. Sel. Top. Quantum Electron. 6, 988 (2000).
[CrossRef]

1994

M. Kuznetsov, "Design of widely tunable semiconductor three-branch lasers," J. Lightwave Technol. 12, 2100-2106 (1994).
[CrossRef]

1993

O. Hildebrand, M. Schilling, D. Baums,  et al., "The Y-laser: A Multifunctional Device for Optical Communication Systems and Switching Networks," J. Lightwave Technol. 11, 2066-2074 (1993).
[CrossRef]

V. Jayaraman, A. Mathur, and L. A Coldren, "Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, and H. Ishii, "Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers," IEEE J. Quantum Electron. 29, 1817-1823 (1993).
[CrossRef]

1992

R. C. Alferness, U. Koren, and L. L. Buhl, "Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range," Appl. Phys. Lett. 60, 3209-3211 (1992).
[CrossRef]

M. Kuznetsov, P. Verlangieri, and A. G. Dentai, "Asymmetric Y-Branch Tunable Semiconductor Laser with 1.0 THz Tuning Range," IEEE Photon. Technol. Lett. 4, 1093-1095 (1992).
[CrossRef]

M. Schilling, K. Diitting, and W. Idler, "Asymmetrical Y laser with simple single current tuning response," Electron. Lett. 28, 1698-1699 (1992).
[CrossRef]

1990

T. L. Koch and U. Koren, "Semiconductor Lasers for Coherent Optical Fiber Communications," J. Lightwave Technol. 8, 274-293 (1990).
[CrossRef]

N. P. Caponio, M. Goano, I. Maio, M. Meliga, G. P. Bava, G. D. Anis, and I. Montrosset, "Analysis and Design criteria of Three-Section DBR Tunable Lasers," IEEE J. Sel. Areas Commun. 8, 1203-1213 (1990).
[CrossRef]

1988

R. J. Lang and A. Yariv, "An exact formulation of coupled-mode theory for coupled-cavity lasers," IEEE J. Quantum Electron. 24, 66-72 (1988).
[CrossRef]

1986

D. Marcuse, "Coupling coefficients of coupled laser cavities," IEEE J. Quantum Electron. 22, 223-226 (1986).
[CrossRef]

1985

T. L. Koch and L. A. Coldren, "Optimum coupling junction and cavity lengths for coupled-cavity semiconductor lasers," J. Appl. Phys. 57, 742-754 (1985).
[CrossRef]

W. T. Tsang, "The cleaved-coupled-cavity (C3) laser," Semicond. Semimetals  22, 257 (1985).
[CrossRef]

1984

L. A. Coldren and T. L. Koch, "Analysis and design of coupled-cavity lasers," IEEE J. Quantum Electron. 20, 659-682 (1984).
[CrossRef]

1981

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, "Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive-ion-etching," Appl. Phys. Lett. 38, 315-317 (1981).
[CrossRef]

Alferness, R. C.

R. C. Alferness, U. Koren, and L. L. Buhl, "Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range," Appl. Phys. Lett. 60, 3209-3211 (1992).
[CrossRef]

Anandarajah, P. M.

P. M. Anandarajah, R. Maher, and L. P. Barry,  et al., "Characterization of frequency drift of sampled-grating DBR Laser module under direct modulation," IEEE Photon. Technol. Lett. 20, 239-241 (2008).
[CrossRef]

Anis, G. D.

N. P. Caponio, M. Goano, I. Maio, M. Meliga, G. P. Bava, G. D. Anis, and I. Montrosset, "Analysis and Design criteria of Three-Section DBR Tunable Lasers," IEEE J. Sel. Areas Commun. 8, 1203-1213 (1990).
[CrossRef]

Barry, L. P.

P. M. Anandarajah, R. Maher, and L. P. Barry,  et al., "Characterization of frequency drift of sampled-grating DBR Laser module under direct modulation," IEEE Photon. Technol. Lett. 20, 239-241 (2008).
[CrossRef]

Baums, D.

O. Hildebrand, M. Schilling, D. Baums,  et al., "The Y-laser: A Multifunctional Device for Optical Communication Systems and Switching Networks," J. Lightwave Technol. 11, 2066-2074 (1993).
[CrossRef]

Bava, G. P.

N. P. Caponio, M. Goano, I. Maio, M. Meliga, G. P. Bava, G. D. Anis, and I. Montrosset, "Analysis and Design criteria of Three-Section DBR Tunable Lasers," IEEE J. Sel. Areas Commun. 8, 1203-1213 (1990).
[CrossRef]

Buhl, L. L.

R. C. Alferness, U. Koren, and L. L. Buhl, "Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range," Appl. Phys. Lett. 60, 3209-3211 (1992).
[CrossRef]

Caponio, N. P.

N. P. Caponio, M. Goano, I. Maio, M. Meliga, G. P. Bava, G. D. Anis, and I. Montrosset, "Analysis and Design criteria of Three-Section DBR Tunable Lasers," IEEE J. Sel. Areas Commun. 8, 1203-1213 (1990).
[CrossRef]

Coldren, L. A

V. Jayaraman, A. Mathur, and L. A Coldren, "Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

Coldren, L. A.

J. W. Raring and L. A. Coldren, "40Gb/s Widely-Tunable Transceivers," invited paper, IEEE J. Sel. Top. Quantum Electron. 13, 3-14 (2007).
[CrossRef]

L. A. Coldren, "Monolithic Tunable Diode Lasers," IEEE J. Sel. Top. Quantum Electron. 6, 988 (2000).
[CrossRef]

T. L. Koch and L. A. Coldren, "Optimum coupling junction and cavity lengths for coupled-cavity semiconductor lasers," J. Appl. Phys. 57, 742-754 (1985).
[CrossRef]

L. A. Coldren and T. L. Koch, "Analysis and design of coupled-cavity lasers," IEEE J. Quantum Electron. 20, 659-682 (1984).
[CrossRef]

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, "Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive-ion-etching," Appl. Phys. Lett. 38, 315-317 (1981).
[CrossRef]

Dentai, A. G.

M. Kuznetsov, P. Verlangieri, and A. G. Dentai, "Asymmetric Y-Branch Tunable Semiconductor Laser with 1.0 THz Tuning Range," IEEE Photon. Technol. Lett. 4, 1093-1095 (1992).
[CrossRef]

Diitting, K.

M. Schilling, K. Diitting, and W. Idler, "Asymmetrical Y laser with simple single current tuning response," Electron. Lett. 28, 1698-1699 (1992).
[CrossRef]

Goano, M.

N. P. Caponio, M. Goano, I. Maio, M. Meliga, G. P. Bava, G. D. Anis, and I. Montrosset, "Analysis and Design criteria of Three-Section DBR Tunable Lasers," IEEE J. Sel. Areas Commun. 8, 1203-1213 (1990).
[CrossRef]

Hildebrand, O.

O. Hildebrand, M. Schilling, D. Baums,  et al., "The Y-laser: A Multifunctional Device for Optical Communication Systems and Switching Networks," J. Lightwave Technol. 11, 2066-2074 (1993).
[CrossRef]

Idler, W.

M. Schilling, K. Diitting, and W. Idler, "Asymmetrical Y laser with simple single current tuning response," Electron. Lett. 28, 1698-1699 (1992).
[CrossRef]

Iga, K.

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, "Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive-ion-etching," Appl. Phys. Lett. 38, 315-317 (1981).
[CrossRef]

Ishii, H.

Y. Tohmori, Y. Yoshikuni, and H. Ishii, "Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers," IEEE J. Quantum Electron. 29, 1817-1823 (1993).
[CrossRef]

Jayaraman, V.

V. Jayaraman, A. Mathur, and L. A Coldren, "Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

Koch, T. L.

T. L. Koch and U. Koren, "Semiconductor Lasers for Coherent Optical Fiber Communications," J. Lightwave Technol. 8, 274-293 (1990).
[CrossRef]

T. L. Koch and L. A. Coldren, "Optimum coupling junction and cavity lengths for coupled-cavity semiconductor lasers," J. Appl. Phys. 57, 742-754 (1985).
[CrossRef]

L. A. Coldren and T. L. Koch, "Analysis and design of coupled-cavity lasers," IEEE J. Quantum Electron. 20, 659-682 (1984).
[CrossRef]

Koren, U.

R. C. Alferness, U. Koren, and L. L. Buhl, "Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range," Appl. Phys. Lett. 60, 3209-3211 (1992).
[CrossRef]

T. L. Koch and U. Koren, "Semiconductor Lasers for Coherent Optical Fiber Communications," J. Lightwave Technol. 8, 274-293 (1990).
[CrossRef]

Kuznetsov, M.

M. Kuznetsov, "Design of widely tunable semiconductor three-branch lasers," J. Lightwave Technol. 12, 2100-2106 (1994).
[CrossRef]

M. Kuznetsov, P. Verlangieri, and A. G. Dentai, "Asymmetric Y-Branch Tunable Semiconductor Laser with 1.0 THz Tuning Range," IEEE Photon. Technol. Lett. 4, 1093-1095 (1992).
[CrossRef]

Lang, R. J.

R. J. Lang and A. Yariv, "An exact formulation of coupled-mode theory for coupled-cavity lasers," IEEE J. Quantum Electron. 24, 66-72 (1988).
[CrossRef]

Maher, R.

P. M. Anandarajah, R. Maher, and L. P. Barry,  et al., "Characterization of frequency drift of sampled-grating DBR Laser module under direct modulation," IEEE Photon. Technol. Lett. 20, 239-241 (2008).
[CrossRef]

Maio, I.

N. P. Caponio, M. Goano, I. Maio, M. Meliga, G. P. Bava, G. D. Anis, and I. Montrosset, "Analysis and Design criteria of Three-Section DBR Tunable Lasers," IEEE J. Sel. Areas Commun. 8, 1203-1213 (1990).
[CrossRef]

Marcuse, D.

D. Marcuse, "Coupling coefficients of coupled laser cavities," IEEE J. Quantum Electron. 22, 223-226 (1986).
[CrossRef]

Mathur, A.

V. Jayaraman, A. Mathur, and L. A Coldren, "Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

Meliga, M.

N. P. Caponio, M. Goano, I. Maio, M. Meliga, G. P. Bava, G. D. Anis, and I. Montrosset, "Analysis and Design criteria of Three-Section DBR Tunable Lasers," IEEE J. Sel. Areas Commun. 8, 1203-1213 (1990).
[CrossRef]

Miller, B. I.

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, "Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive-ion-etching," Appl. Phys. Lett. 38, 315-317 (1981).
[CrossRef]

Montrosset, I.

N. P. Caponio, M. Goano, I. Maio, M. Meliga, G. P. Bava, G. D. Anis, and I. Montrosset, "Analysis and Design criteria of Three-Section DBR Tunable Lasers," IEEE J. Sel. Areas Commun. 8, 1203-1213 (1990).
[CrossRef]

Raring, J. W.

J. W. Raring and L. A. Coldren, "40Gb/s Widely-Tunable Transceivers," invited paper, IEEE J. Sel. Top. Quantum Electron. 13, 3-14 (2007).
[CrossRef]

Rentschler, J. A.

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, "Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive-ion-etching," Appl. Phys. Lett. 38, 315-317 (1981).
[CrossRef]

Schilling, M.

O. Hildebrand, M. Schilling, D. Baums,  et al., "The Y-laser: A Multifunctional Device for Optical Communication Systems and Switching Networks," J. Lightwave Technol. 11, 2066-2074 (1993).
[CrossRef]

M. Schilling, K. Diitting, and W. Idler, "Asymmetrical Y laser with simple single current tuning response," Electron. Lett. 28, 1698-1699 (1992).
[CrossRef]

Tohmori, Y.

Y. Tohmori, Y. Yoshikuni, and H. Ishii, "Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers," IEEE J. Quantum Electron. 29, 1817-1823 (1993).
[CrossRef]

Tsang, W. T.

W. T. Tsang, "The cleaved-coupled-cavity (C3) laser," Semicond. Semimetals  22, 257 (1985).
[CrossRef]

Verlangieri, P.

M. Kuznetsov, P. Verlangieri, and A. G. Dentai, "Asymmetric Y-Branch Tunable Semiconductor Laser with 1.0 THz Tuning Range," IEEE Photon. Technol. Lett. 4, 1093-1095 (1992).
[CrossRef]

Yariv, A.

R. J. Lang and A. Yariv, "An exact formulation of coupled-mode theory for coupled-cavity lasers," IEEE J. Quantum Electron. 24, 66-72 (1988).
[CrossRef]

Yoshikuni, Y.

Y. Tohmori, Y. Yoshikuni, and H. Ishii, "Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers," IEEE J. Quantum Electron. 29, 1817-1823 (1993).
[CrossRef]

Appl. Phys. Lett.

R. C. Alferness, U. Koren, and L. L. Buhl, "Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range," Appl. Phys. Lett. 60, 3209-3211 (1992).
[CrossRef]

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, "Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive-ion-etching," Appl. Phys. Lett. 38, 315-317 (1981).
[CrossRef]

Electron. Lett.

M. Schilling, K. Diitting, and W. Idler, "Asymmetrical Y laser with simple single current tuning response," Electron. Lett. 28, 1698-1699 (1992).
[CrossRef]

IEEE J. Quantum Electron.

Y. Tohmori, Y. Yoshikuni, and H. Ishii, "Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers," IEEE J. Quantum Electron. 29, 1817-1823 (1993).
[CrossRef]

L. A. Coldren and T. L. Koch, "Analysis and design of coupled-cavity lasers," IEEE J. Quantum Electron. 20, 659-682 (1984).
[CrossRef]

D. Marcuse, "Coupling coefficients of coupled laser cavities," IEEE J. Quantum Electron. 22, 223-226 (1986).
[CrossRef]

R. J. Lang and A. Yariv, "An exact formulation of coupled-mode theory for coupled-cavity lasers," IEEE J. Quantum Electron. 24, 66-72 (1988).
[CrossRef]

V. Jayaraman, A. Mathur, and L. A Coldren, "Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

IEEE J. Sel. Areas Commun.

N. P. Caponio, M. Goano, I. Maio, M. Meliga, G. P. Bava, G. D. Anis, and I. Montrosset, "Analysis and Design criteria of Three-Section DBR Tunable Lasers," IEEE J. Sel. Areas Commun. 8, 1203-1213 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. W. Raring and L. A. Coldren, "40Gb/s Widely-Tunable Transceivers," invited paper, IEEE J. Sel. Top. Quantum Electron. 13, 3-14 (2007).
[CrossRef]

L. A. Coldren, "Monolithic Tunable Diode Lasers," IEEE J. Sel. Top. Quantum Electron. 6, 988 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

P. M. Anandarajah, R. Maher, and L. P. Barry,  et al., "Characterization of frequency drift of sampled-grating DBR Laser module under direct modulation," IEEE Photon. Technol. Lett. 20, 239-241 (2008).
[CrossRef]

M. Kuznetsov, P. Verlangieri, and A. G. Dentai, "Asymmetric Y-Branch Tunable Semiconductor Laser with 1.0 THz Tuning Range," IEEE Photon. Technol. Lett. 4, 1093-1095 (1992).
[CrossRef]

J. Appl. Phys.

T. L. Koch and L. A. Coldren, "Optimum coupling junction and cavity lengths for coupled-cavity semiconductor lasers," J. Appl. Phys. 57, 742-754 (1985).
[CrossRef]

J. Lightwave Technol.

O. Hildebrand, M. Schilling, D. Baums,  et al., "The Y-laser: A Multifunctional Device for Optical Communication Systems and Switching Networks," J. Lightwave Technol. 11, 2066-2074 (1993).
[CrossRef]

M. Kuznetsov, "Design of widely tunable semiconductor three-branch lasers," J. Lightwave Technol. 12, 2100-2106 (1994).
[CrossRef]

T. L. Koch and U. Koren, "Semiconductor Lasers for Coherent Optical Fiber Communications," J. Lightwave Technol. 8, 274-293 (1990).
[CrossRef]

Semicond. Semimetals

W. T. Tsang, "The cleaved-coupled-cavity (C3) laser," Semicond. Semimetals  22, 257 (1985).
[CrossRef]

Other

J.-O. Wesström, G. Sarlet, and S. Hammerfeldt, "State of the art performance of widely tunable modulated grating Y-branch lasers," Optical Fiber Communication Conference, Washington DC, paper TuE2 (2004).

D. J. Robbins, G. Busico, L. Ponnampalam, J. P. Duck, P. J. Williams, R. A. Griffin, A. J. Ward, D. C. J. Reid, N. D. Whitbread, and E. Barton, "A high power, broadband tuneable laser module based on a DS-DBR laser with integrated SOA," Optical Fiber Communication Conference, Washington DC, Paper TuE3 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Schematic diagram of a V-coupled cavity laser within a MZI

Fig. 2.
Fig. 2.

Schematic diagram illustrating the relationships between the resonant frequency combs of the two cavities and the material gain spectrum.

Fig. 3.
Fig. 3.

Unfolded reflective 2 × 2 coupler in the V-coupled cavities

Fig. 4.
Fig. 4.

Power transfer functions of quarter-wave (a) and half-wave (b) optical couplers.

Fig. 5.
Fig. 5.

Effective reflection factors versus wavelength.

Fig. 6.
Fig. 6.

Small signal gain spectra of the laser near its threshold when the signal is transmitted through the fixed gain cavity (dotted line) and through the wavelength selector cavity (solid line) for a cavity length difference of 10% (a) and 5% (b).

Fig. 7.
Fig. 7.

Effective reflection factors corresponding to χ = 0.1 (solid line) and χ = 0.5 (dotted line).

Fig. 8.
Fig. 8.

Lasing threshold of the cavity modes for χ = 0.1 (circles) and χ = 0.5 (crosses).

Fig. 9.
Fig. 9.

Threshold gain difference between the lowest threshold mode and the next lowest threshold mode (a) and the corresponding side-mode suppression ratio (b) as a function of the normalized cross-coupling coefficient χ for a cavity length difference of 10% (solid line) and 5% (dashed line).

Fig. 10.
Fig. 10.

Threshold gain difference between the lowest threshold mode and the next lowest threshold mode as a function of the normalized cross-coupling coefficient χ for two different pumping conditions corresponding to gL = g′L′ (solid line) and g = g′ (dotted line). The cavity length difference is 20%.

Fig. 11.
Fig. 11.

Threshold gain difference versus the normalized cross-coupling coefficient for different cross-coupling phases.

Fig. 12.
Fig. 12.

Maximal threshold gain difference and the corresponding χ opt versus cross-coupling phase.

Fig. 13.
Fig. 13.

Variations of the cross-coupling phase, cross-coupling coefficient and excess loss versus the width and length of the coupling region.

Fig. 14.
Fig. 14.

Schematic diagram of a Y-coupled cavity laser

Fig. 15.
Fig. 15.

Threshold gain coefficient of the lowest threshold mode (solid line) and the next lowest threshold mode (dotted line) as a function of the Y-coupling coefficient of the Y-laser.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

Δ f = c 2 n g L
Δ f = c 2 n g L = c 2 ( n a L a + n b L b )
Δ f c = Δ f Δ f Δ f Δ f
δ f f = δ n n = δ n b L b n b L
δ f = Δ f Δ f Δ f δ f
η = C 11 + C 21 C 12 r 1 r 2 e 2 ( g + ik ) L ( 1 + C 22 r 1 r 2 e 2 ( g + ik ) L + C 22 2 r 1 2 r 2 2 e 4 ( g + ik ) L + . . . )
= C 11 + C 21 C 12 r 1 r 2 e 2 ( g + ik ) L 1 C 22 r 1 r 2 e 2 ( g + ik ) L
r 1 η r 2 e 2 ( g + ik ) L = 1
η = C 22 + C 21 C 12 r 1 r 2 e 2 ( g + ik ) L ( 1 + C 11 r 1 r 2 e 2 ( g + ik ) L + C 2 11 r 1 2 r 2 2 e 4 ( g + ik ) L + . . . )
= C 22 + C 21 C 12 r 1 r 2 e 2 ( g + ik ) L 1 C 22 r 1 r 2 e 2 ( g + ik ) L .
r 1 η r 2 e 2 ( g + ik ) L = 1
C 11 r 1 r 2 e 2 ( g + ik ) L + C 22 r 1 r 2 e 2 ( g + ik ) L ( C 11 C 22 C 21 C 12 ) r 1 2 r 2 2 e 2 ( g + ik ) L e 2 ( g + ik ) L = 1
E 1 = r 1 r 2 ( C 11 E 1 e ( g + ik ) L + C 21 E 2 e ( g + ik ) L ) e ( g + ik ) L
E 2 = r 1 r 2 ( C 12 E 1 e ( g + ik ) L + C 22 E 2 e ( g + ik ) L ) e ( g + ik ) L
( C 11 + β C 21 ) r 1 r 2 e 2 ( g + ik ) L = 1
( C 22 + C 12 β ) r 1 r 2 e 2 ( g + ik ) L = 1
β = E 2 e ( g + ik ) L E 1 e ( g + ik ) L
P 1 = 1 2 [ C 11 2 + C 21 2 + 2 C 11 C 21 cos ( φ + ϕ ) ]
P 2 = 1 2 [ C 12 2 + C 22 2 + 2 C 12 C 22 cos ( φ ϕ ) ]
χ = C 21 2 C 11 2 + C 21 2 = C 12 2 C 12 2 + C 22 2
E 1 = r 1 r 2 ( C 1 E 1 e ( g + ik ) L + C 2 E 2 e ( g + ik ) L ) C 1 e ( g + ik ) L
E 2 = r 1 r 2 ( C 1 E 1 e ( g + ik ) L + C 2 E 2 e ( g + ik ) L ) C 2 e ( g + ik ) L
C 1 C 1 r 1 r 2 e 2 ( g + ik ) L + C 2 C 2 r 1 r 2 e 2 ( g + ik ) L = 1

Metrics