Abstract

This work investigates the switching characteristics of the polymer-stabilized vertical alignment (VA) liquid crystal (LC) cell. The experimental results reveal that the fall time of the cell declines as the monomer concentration increases because the vertically-aligned polymer networks accelerate the relaxation of the LC molecules. Furthermore, the formed polymer networks impede the growth and annihilation of LC defects, suppressing the optical bounce in the time dependent transmittance curve of the cell when the voltage is applied to the cell, substantially reducing the rise time of the cell. A step-voltage driving scheme is demonstrated to eliminate completely the optical bounce and hence improve further the rise time of the VA LC cell. The rise times of the pristine and the polymer-stabilized VA LC cells under the step-voltage driving scheme are less than 50% of those under the conventional driving scheme.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Lueder, Liquid Crystal Displays, Addressing Schemes and Electro-optical Effects (John Wiley and Sons, Singapore, 2001).
  2. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (John Wiley and Sons, Singapore, 2001).
  3. K. H. Yang, "Two-domain 80°-twisted nematic liquid crystal display for grayscale applications," Jpn. J. Appl. Phys. 31, L1603 (1992).
    [CrossRef]
  4. M. Oh-E, K. Kondo, "Response mechanism of nematic liquid crystals using the in-plane switching mode," Appl. Phys. Lett. 69, 623 (1996).
    [CrossRef]
  5. K. Ohmuro, S. Kataoka, T. Sasaki, and Y. Koike, "Development of super-high-image-quality vertical-alignment-mode LCD," Proc. SID 845 (1997).
  6. K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, "A new MVA-LCD by polymer sustained alignment technology," Proc. SID 1200 (2004).
    [CrossRef]
  7. P. J. Bos, K. R. Koehler, and Beran, "The pi-cell: a fast liquid-crystal optical-switching device," Mol. Cryst. Liq. Cryst. 113, 329 (1984).
    [CrossRef]
  8. Q3. S. Onda, T. Miyashita, and T. Uchida, "Mechanism of fast response and recover in bend alignment cell," Mol. Cryst. Liq. Cryst. 331, 383 (1999).
    [CrossRef]
  9. E. J. Acosta, M. J. Towler, and M. D. Tillin, "Route towards optimization of the response times of a pi-cell liquid-crystal mode," J. Appl. Phys. 97, 093106 (2005).
    [CrossRef]
  10. S. H. Kim and L. C. Chien, "Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils," Jpn. J. Appl. Phys. 43, 7643 (2004).
    [CrossRef]
  11. C. Y. Huang, R. X. Fung, and Y. G. Lin, "Effects of curing conditions on electrooptical properties of polymer-stabilized liquid crystal pi cells," Jpn. J. Appl. Phys. 46, 5230 (2007).
    [CrossRef]
  12. C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, "Fast switching of polymer-stabilized liquid crystal pi cells," Appl. Phys. Lett. 90, 171918 (2007).
    [CrossRef]
  13. S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, "Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen," Appl. Phys. Lett. 90, 261910 (2007).
    [CrossRef]
  14. M. Gu, I. I. Smalyukh, and O. D. Lavrentovich, "Directed vertical alignment liquid crystal display with fast switching," Appl. Phys. Lett. 88, 061110 (2006).
    [CrossRef]
  15. Q4. D. S. Seo, J. H. Lee, and H. Y. Kim, "Wide viewing angle and fast response time using a novel vertical-alignment-pi cell mode on a homeotropic alignment layer," Liq. Cryst. 27, 1147 (2000).
    [CrossRef]
  16. J. E. Anderson, C. Cai, and S. C. A. Lien, "Vertically aligned pi-cell LCD having ON-state with mid-plane molecules perpendicular to the substrates," US Patent No. 6,067,142 (2000).
  17. E. Jakeman and E. P. Raynes, "Electro-optic response times in liquid crystals," Phys. Lett. A 39, 69 (1972).
    [CrossRef]
  18. A. Y. G. Fuh, M. S. Tsai, and C. Y. Huang, "Polymer network formed in liquid crystals: polymer-network-induced birefringence in liquid crystals," Jpn. J. Appl. Phys. 35, 3960 (1996).
    [CrossRef]

2007 (3)

C. Y. Huang, R. X. Fung, and Y. G. Lin, "Effects of curing conditions on electrooptical properties of polymer-stabilized liquid crystal pi cells," Jpn. J. Appl. Phys. 46, 5230 (2007).
[CrossRef]

C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, "Fast switching of polymer-stabilized liquid crystal pi cells," Appl. Phys. Lett. 90, 171918 (2007).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, "Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen," Appl. Phys. Lett. 90, 261910 (2007).
[CrossRef]

2006 (1)

M. Gu, I. I. Smalyukh, and O. D. Lavrentovich, "Directed vertical alignment liquid crystal display with fast switching," Appl. Phys. Lett. 88, 061110 (2006).
[CrossRef]

2005 (1)

E. J. Acosta, M. J. Towler, and M. D. Tillin, "Route towards optimization of the response times of a pi-cell liquid-crystal mode," J. Appl. Phys. 97, 093106 (2005).
[CrossRef]

2004 (1)

S. H. Kim and L. C. Chien, "Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils," Jpn. J. Appl. Phys. 43, 7643 (2004).
[CrossRef]

2000 (1)

Q4. D. S. Seo, J. H. Lee, and H. Y. Kim, "Wide viewing angle and fast response time using a novel vertical-alignment-pi cell mode on a homeotropic alignment layer," Liq. Cryst. 27, 1147 (2000).
[CrossRef]

1999 (1)

Q3. S. Onda, T. Miyashita, and T. Uchida, "Mechanism of fast response and recover in bend alignment cell," Mol. Cryst. Liq. Cryst. 331, 383 (1999).
[CrossRef]

1996 (2)

M. Oh-E, K. Kondo, "Response mechanism of nematic liquid crystals using the in-plane switching mode," Appl. Phys. Lett. 69, 623 (1996).
[CrossRef]

A. Y. G. Fuh, M. S. Tsai, and C. Y. Huang, "Polymer network formed in liquid crystals: polymer-network-induced birefringence in liquid crystals," Jpn. J. Appl. Phys. 35, 3960 (1996).
[CrossRef]

1992 (1)

K. H. Yang, "Two-domain 80°-twisted nematic liquid crystal display for grayscale applications," Jpn. J. Appl. Phys. 31, L1603 (1992).
[CrossRef]

1984 (1)

P. J. Bos, K. R. Koehler, and Beran, "The pi-cell: a fast liquid-crystal optical-switching device," Mol. Cryst. Liq. Cryst. 113, 329 (1984).
[CrossRef]

1972 (1)

E. Jakeman and E. P. Raynes, "Electro-optic response times in liquid crystals," Phys. Lett. A 39, 69 (1972).
[CrossRef]

Acosta, E. J.

E. J. Acosta, M. J. Towler, and M. D. Tillin, "Route towards optimization of the response times of a pi-cell liquid-crystal mode," J. Appl. Phys. 97, 093106 (2005).
[CrossRef]

Bos, P. J.

P. J. Bos, K. R. Koehler, and Beran, "The pi-cell: a fast liquid-crystal optical-switching device," Mol. Cryst. Liq. Cryst. 113, 329 (1984).
[CrossRef]

Chien, L. C.

S. H. Kim and L. C. Chien, "Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils," Jpn. J. Appl. Phys. 43, 7643 (2004).
[CrossRef]

Fuh, A. Y. G.

A. Y. G. Fuh, M. S. Tsai, and C. Y. Huang, "Polymer network formed in liquid crystals: polymer-network-induced birefringence in liquid crystals," Jpn. J. Appl. Phys. 35, 3960 (1996).
[CrossRef]

Fung, R. X.

C. Y. Huang, R. X. Fung, and Y. G. Lin, "Effects of curing conditions on electrooptical properties of polymer-stabilized liquid crystal pi cells," Jpn. J. Appl. Phys. 46, 5230 (2007).
[CrossRef]

C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, "Fast switching of polymer-stabilized liquid crystal pi cells," Appl. Phys. Lett. 90, 171918 (2007).
[CrossRef]

Gu, M.

M. Gu, I. I. Smalyukh, and O. D. Lavrentovich, "Directed vertical alignment liquid crystal display with fast switching," Appl. Phys. Lett. 88, 061110 (2006).
[CrossRef]

Hsieh, C. T.

C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, "Fast switching of polymer-stabilized liquid crystal pi cells," Appl. Phys. Lett. 90, 171918 (2007).
[CrossRef]

Huang, C. Y.

C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, "Fast switching of polymer-stabilized liquid crystal pi cells," Appl. Phys. Lett. 90, 171918 (2007).
[CrossRef]

C. Y. Huang, R. X. Fung, and Y. G. Lin, "Effects of curing conditions on electrooptical properties of polymer-stabilized liquid crystal pi cells," Jpn. J. Appl. Phys. 46, 5230 (2007).
[CrossRef]

A. Y. G. Fuh, M. S. Tsai, and C. Y. Huang, "Polymer network formed in liquid crystals: polymer-network-induced birefringence in liquid crystals," Jpn. J. Appl. Phys. 35, 3960 (1996).
[CrossRef]

Jakeman, E.

E. Jakeman and E. P. Raynes, "Electro-optic response times in liquid crystals," Phys. Lett. A 39, 69 (1972).
[CrossRef]

Kim, H. Y.

Q4. D. S. Seo, J. H. Lee, and H. Y. Kim, "Wide viewing angle and fast response time using a novel vertical-alignment-pi cell mode on a homeotropic alignment layer," Liq. Cryst. 27, 1147 (2000).
[CrossRef]

Kim, K. H.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, "Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen," Appl. Phys. Lett. 90, 261910 (2007).
[CrossRef]

Kim, S. G.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, "Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen," Appl. Phys. Lett. 90, 261910 (2007).
[CrossRef]

Kim, S. H.

S. H. Kim and L. C. Chien, "Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils," Jpn. J. Appl. Phys. 43, 7643 (2004).
[CrossRef]

Kim, S. M.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, "Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen," Appl. Phys. Lett. 90, 261910 (2007).
[CrossRef]

Kim, Y. S.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, "Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen," Appl. Phys. Lett. 90, 261910 (2007).
[CrossRef]

Koehler, K. R.

P. J. Bos, K. R. Koehler, and Beran, "The pi-cell: a fast liquid-crystal optical-switching device," Mol. Cryst. Liq. Cryst. 113, 329 (1984).
[CrossRef]

Kondo, K.

M. Oh-E, K. Kondo, "Response mechanism of nematic liquid crystals using the in-plane switching mode," Appl. Phys. Lett. 69, 623 (1996).
[CrossRef]

Lavrentovich, O. D.

M. Gu, I. I. Smalyukh, and O. D. Lavrentovich, "Directed vertical alignment liquid crystal display with fast switching," Appl. Phys. Lett. 88, 061110 (2006).
[CrossRef]

Lee, G. D.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, "Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen," Appl. Phys. Lett. 90, 261910 (2007).
[CrossRef]

Lee, H. K.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, "Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen," Appl. Phys. Lett. 90, 261910 (2007).
[CrossRef]

Lee, J. H.

Q4. D. S. Seo, J. H. Lee, and H. Y. Kim, "Wide viewing angle and fast response time using a novel vertical-alignment-pi cell mode on a homeotropic alignment layer," Liq. Cryst. 27, 1147 (2000).
[CrossRef]

Lee, S. H.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, "Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen," Appl. Phys. Lett. 90, 261910 (2007).
[CrossRef]

Lin, Y. G.

C. Y. Huang, R. X. Fung, and Y. G. Lin, "Effects of curing conditions on electrooptical properties of polymer-stabilized liquid crystal pi cells," Jpn. J. Appl. Phys. 46, 5230 (2007).
[CrossRef]

C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, "Fast switching of polymer-stabilized liquid crystal pi cells," Appl. Phys. Lett. 90, 171918 (2007).
[CrossRef]

Lyu, J. J.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, "Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen," Appl. Phys. Lett. 90, 261910 (2007).
[CrossRef]

Miyashita, T.

Q3. S. Onda, T. Miyashita, and T. Uchida, "Mechanism of fast response and recover in bend alignment cell," Mol. Cryst. Liq. Cryst. 331, 383 (1999).
[CrossRef]

Oh-E, M.

M. Oh-E, K. Kondo, "Response mechanism of nematic liquid crystals using the in-plane switching mode," Appl. Phys. Lett. 69, 623 (1996).
[CrossRef]

Onda, S.

Q3. S. Onda, T. Miyashita, and T. Uchida, "Mechanism of fast response and recover in bend alignment cell," Mol. Cryst. Liq. Cryst. 331, 383 (1999).
[CrossRef]

Raynes, E. P.

E. Jakeman and E. P. Raynes, "Electro-optic response times in liquid crystals," Phys. Lett. A 39, 69 (1972).
[CrossRef]

Seo, D. S.

Q4. D. S. Seo, J. H. Lee, and H. Y. Kim, "Wide viewing angle and fast response time using a novel vertical-alignment-pi cell mode on a homeotropic alignment layer," Liq. Cryst. 27, 1147 (2000).
[CrossRef]

Smalyukh, I. I.

M. Gu, I. I. Smalyukh, and O. D. Lavrentovich, "Directed vertical alignment liquid crystal display with fast switching," Appl. Phys. Lett. 88, 061110 (2006).
[CrossRef]

Tillin, M. D.

E. J. Acosta, M. J. Towler, and M. D. Tillin, "Route towards optimization of the response times of a pi-cell liquid-crystal mode," J. Appl. Phys. 97, 093106 (2005).
[CrossRef]

Towler, M. J.

E. J. Acosta, M. J. Towler, and M. D. Tillin, "Route towards optimization of the response times of a pi-cell liquid-crystal mode," J. Appl. Phys. 97, 093106 (2005).
[CrossRef]

Tsai, M. S.

A. Y. G. Fuh, M. S. Tsai, and C. Y. Huang, "Polymer network formed in liquid crystals: polymer-network-induced birefringence in liquid crystals," Jpn. J. Appl. Phys. 35, 3960 (1996).
[CrossRef]

Uchida, T.

Q3. S. Onda, T. Miyashita, and T. Uchida, "Mechanism of fast response and recover in bend alignment cell," Mol. Cryst. Liq. Cryst. 331, 383 (1999).
[CrossRef]

Yang, K. H.

K. H. Yang, "Two-domain 80°-twisted nematic liquid crystal display for grayscale applications," Jpn. J. Appl. Phys. 31, L1603 (1992).
[CrossRef]

Appl. Phys. Lett. (4)

M. Oh-E, K. Kondo, "Response mechanism of nematic liquid crystals using the in-plane switching mode," Appl. Phys. Lett. 69, 623 (1996).
[CrossRef]

C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, "Fast switching of polymer-stabilized liquid crystal pi cells," Appl. Phys. Lett. 90, 171918 (2007).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, "Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen," Appl. Phys. Lett. 90, 261910 (2007).
[CrossRef]

M. Gu, I. I. Smalyukh, and O. D. Lavrentovich, "Directed vertical alignment liquid crystal display with fast switching," Appl. Phys. Lett. 88, 061110 (2006).
[CrossRef]

J. Appl. Phys. (1)

E. J. Acosta, M. J. Towler, and M. D. Tillin, "Route towards optimization of the response times of a pi-cell liquid-crystal mode," J. Appl. Phys. 97, 093106 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (4)

S. H. Kim and L. C. Chien, "Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils," Jpn. J. Appl. Phys. 43, 7643 (2004).
[CrossRef]

C. Y. Huang, R. X. Fung, and Y. G. Lin, "Effects of curing conditions on electrooptical properties of polymer-stabilized liquid crystal pi cells," Jpn. J. Appl. Phys. 46, 5230 (2007).
[CrossRef]

K. H. Yang, "Two-domain 80°-twisted nematic liquid crystal display for grayscale applications," Jpn. J. Appl. Phys. 31, L1603 (1992).
[CrossRef]

A. Y. G. Fuh, M. S. Tsai, and C. Y. Huang, "Polymer network formed in liquid crystals: polymer-network-induced birefringence in liquid crystals," Jpn. J. Appl. Phys. 35, 3960 (1996).
[CrossRef]

Liq. Cryst. (1)

Q4. D. S. Seo, J. H. Lee, and H. Y. Kim, "Wide viewing angle and fast response time using a novel vertical-alignment-pi cell mode on a homeotropic alignment layer," Liq. Cryst. 27, 1147 (2000).
[CrossRef]

Mol. Cryst. Liq. Cryst. (2)

P. J. Bos, K. R. Koehler, and Beran, "The pi-cell: a fast liquid-crystal optical-switching device," Mol. Cryst. Liq. Cryst. 113, 329 (1984).
[CrossRef]

Q3. S. Onda, T. Miyashita, and T. Uchida, "Mechanism of fast response and recover in bend alignment cell," Mol. Cryst. Liq. Cryst. 331, 383 (1999).
[CrossRef]

Phys. Lett. A (1)

E. Jakeman and E. P. Raynes, "Electro-optic response times in liquid crystals," Phys. Lett. A 39, 69 (1972).
[CrossRef]

Other (5)

J. E. Anderson, C. Cai, and S. C. A. Lien, "Vertically aligned pi-cell LCD having ON-state with mid-plane molecules perpendicular to the substrates," US Patent No. 6,067,142 (2000).

K. Ohmuro, S. Kataoka, T. Sasaki, and Y. Koike, "Development of super-high-image-quality vertical-alignment-mode LCD," Proc. SID 845 (1997).

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, "A new MVA-LCD by polymer sustained alignment technology," Proc. SID 1200 (2004).
[CrossRef]

E. Lueder, Liquid Crystal Displays, Addressing Schemes and Electro-optical Effects (John Wiley and Sons, Singapore, 2001).

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (John Wiley and Sons, Singapore, 2001).

Supplementary Material (2)

» Media 1: MPG (2404 KB)     
» Media 2: MPG (1348 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(3.65 MB) POM movies of (a) pristine VA pi cell and (b) polymer-stabilized VA pi cell with 0.2 wt% monomer. The amplitude of the applied voltage is 10V. [Media 1][Media 2]

Fig. 2.
Fig. 2.

(a) Switching characteristics of pristine VA pi cell under applied pulse-voltages of 5 V and 10 V; (b) Switching characteristics of pristine VA pi cell and polymer-stabilized VA pi cell with 0.2 wt% monomer. The amplitude of the applied pulse-voltage is 10 V.

Fig. 3.
Fig. 3.

Voltage-dependent (a) rise, (b) fall and (c) total response times of polymer-stabilized VA pi cells at various monomer concentrations.

Fig. 4.
Fig. 4.

(a) Optical responses of pristine VA pi cell under conventional pulse-voltage and proposed step-voltage; (b) optical responses of polymer-stabilized VA pi cell with 0.2 wt% monomer under conventional pulse-voltage and proposed step-voltage.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ on = γ 1 d 2 ε 0 Δ ε V 2 k eff π 2
τ off = γ 1 d 2 k eff π 2

Metrics