Abstract

We observed superluminal light in aqueous solution of the protein complex bacteriorhodopsin (bR) at 647.1 nm wavelength where it exhibits reverse saturable behavior, exploiting the technique of coherent population oscillations (CPO). With a modulation frequency of 10 Hz, the signal pulse through a 1 cm path cell is ahead by 3 msec relative to the reference pulse, corresponding to a group velocity of -3.3 m/sec. Following our early work on slow light in the same sample at the saturable wavelength 568.2 nm, we now explicitly observed the narrow spectral hole in the absorption band of the stable B state and further, demonstrated a close correlation between the profile of the hole and the corresponding pulse delay for various modulation frequencies. A similar behavior is observed for superluminal light versus antihole blown in the absorption band.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
    [CrossRef]
  2. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 1139031-1139034 (2003).
    [CrossRef]
  3. L. Li, X. Peng, C. Liu, H. Guo and X. Chen, "The transition time induced narrow linewidth of the electromagnetically induced transparency in cesium vapor," J. Phys. B 37, 1873-1878 (2004).
    [CrossRef]
  4. S. Chakrabarti, A. Pradhan, B. Ray, and P. N. Gosh, "Velocity selective optical pumping effects and electromagnetically induced transparency for D2 transitions in rubidium," J. Phys. B 38, 4321-4327 (2005).
    [CrossRef]
  5. S. E. Schwartz and T.Y. Tan, "Wave interactions in saturable absorbers," Appl. Phys. Lett. 10, 4-7 (1967).
    [CrossRef]
  6. B. H. Soffer and B. B. McFarland, "Frequency locking and dye spectral hole burning in Q-spoiled lasers," Appl. Phys. Lett. 8, 166-169 (1966).
    [CrossRef]
  7. M. SargentIII, "Spectroscopic technique based on Lamb’s laser theory," Phys. Rep. 43, 223-265 (1978).
    [CrossRef]
  8. L. W. Hillman, R. W. Boyd, J. Krasinski and C. R. Stroud, "Observation of a spectral hole due to population oscillations in a homogeneously broadened optical absorption line," Opt. Commun. 45, 416-419 (1983).
    [CrossRef]
  9. P. Wu and D. V. G. L. N. Rao, "Controllable snail-paced light in biological bacteriorhodopsin thin film," Phys. Rev. Lett. 95, 2536011-2536014 (2005).
    [CrossRef]
  10. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang. and S. L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291-2293 (2004).
    [CrossRef] [PubMed]
  11. Y. Okawachi, M. Bigelow, J. Sharping, Z. Zhu, A. Schweinsberg, D. Gauthier, R. Boyd, and A. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 1539021-1539024 (2005).
    [CrossRef]
  12. A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
    [CrossRef]
  13. C. S. Yelleswarapu, R. Philip, F. J. Aranda, B. R. Kimball and D. V. G. L. N. Rao, "Slow light in bacteriorhodopsin solution using coherent population oscillations," Opt. Lett. 32, 1788-1790 (2007).
    [CrossRef] [PubMed]
  14. M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, "Superluminal and slow light propagation in a room-temperature solid," Science 301, 200-202 (2003).
    [CrossRef] [PubMed]
  15. V. S. Zapasskii and G. G. Kozlov, "A saturable absorber, coherent, population oscillations and slow light," Opt. Spectrosc. 100, 419-424 (2006).
    [CrossRef]
  16. N. Hampp, R. Thoma, D. Oesterhelt, and C. Bräuchle, "Biological photochrome bacteriorhodopsin and its genetic variant Asp96 to Asn as media for optical pattern recognition," Appl. Opt. 31, 1834-1841 (1992).
    [CrossRef] [PubMed]
  17. A. Foanrev, A. L. Milkaelian, B. V. Kryzhanovsky, and V. K. Salakhutdinov, "Dynamic properties of bacteriorhodopsin exposed to ultrashort light pulses," Opt. Lett. 25, 1080-1082 (2000).
    [CrossRef]
  18. A. Lewis, Y. Albeck, Z. Lange, J. Benchowski, and G. Weizman, "Optical computation with negative light intensity with a plastic bacteriorhodopsin film," Science 275, 1462-1464 (1997).
    [CrossRef]
  19. R. Thoma, N. Hampp, C. Brauchle, and D. Oesterhelt, "Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering," Opt. Lett. 16, 651-653 (1991).
    [CrossRef] [PubMed]
  20. D. V. G. L. N. Rao, F. J. Aranda, D. Narayana Rao, Z. Chen, J. A. Akkara, and M. Nakashima, "All-optical logic gates with bacteriorhodopsin films," Opt. Commun. 127, 193-199 (1996).
    [CrossRef]
  21. J. D. Downie, "Real-time holographic image correction using bacteriorhodopsin," Appl. Opt. 33, 4353-4357 (1994).
    [CrossRef] [PubMed]
  22. J. Joseph, F. J. Aranda, D. V. G. L. N. Rao, J. A. Akkara, and M. Nakashima, "Optical Fourier processing using photoinduced dichroism in a bacteriorhodopsin film," Opt. Lett. 21, 1499-1501 (1996).
    [CrossRef] [PubMed]
  23. G. Piredda and R. W. Boyd, "Slow light by means of coherent population oscillations: laser linewidth effects," J. Eur. Opt. Soc. Rap. Pub. 2,070041-070044 (2007).
  24. D. Gauthier and R. W. Boyd, "Fast light, slow light and optical precursors: What does it all mean?," Photonics Spectra, January, 82-90 (2007).
  25. F. J. Aranda, D. V. G. L. N. Rao, C. L. Wong, P. Zhou, Z. Chen, J. A. Akkara, D. L. Kaplan and J. F. Roach, "Nonlinear optical interactions in bacteriorhodopsin using Z-scan," Opt. Rev. 2, 204-206 (1995).
    [CrossRef]

2007 (3)

G. Piredda and R. W. Boyd, "Slow light by means of coherent population oscillations: laser linewidth effects," J. Eur. Opt. Soc. Rap. Pub. 2,070041-070044 (2007).

D. Gauthier and R. W. Boyd, "Fast light, slow light and optical precursors: What does it all mean?," Photonics Spectra, January, 82-90 (2007).

C. S. Yelleswarapu, R. Philip, F. J. Aranda, B. R. Kimball and D. V. G. L. N. Rao, "Slow light in bacteriorhodopsin solution using coherent population oscillations," Opt. Lett. 32, 1788-1790 (2007).
[CrossRef] [PubMed]

2006 (2)

V. S. Zapasskii and G. G. Kozlov, "A saturable absorber, coherent, population oscillations and slow light," Opt. Spectrosc. 100, 419-424 (2006).
[CrossRef]

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

2005 (3)

Y. Okawachi, M. Bigelow, J. Sharping, Z. Zhu, A. Schweinsberg, D. Gauthier, R. Boyd, and A. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 1539021-1539024 (2005).
[CrossRef]

S. Chakrabarti, A. Pradhan, B. Ray, and P. N. Gosh, "Velocity selective optical pumping effects and electromagnetically induced transparency for D2 transitions in rubidium," J. Phys. B 38, 4321-4327 (2005).
[CrossRef]

P. Wu and D. V. G. L. N. Rao, "Controllable snail-paced light in biological bacteriorhodopsin thin film," Phys. Rev. Lett. 95, 2536011-2536014 (2005).
[CrossRef]

2004 (2)

L. Li, X. Peng, C. Liu, H. Guo and X. Chen, "The transition time induced narrow linewidth of the electromagnetically induced transparency in cesium vapor," J. Phys. B 37, 1873-1878 (2004).
[CrossRef]

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang. and S. L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291-2293 (2004).
[CrossRef] [PubMed]

2003 (2)

M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, "Superluminal and slow light propagation in a room-temperature solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 1139031-1139034 (2003).
[CrossRef]

2000 (1)

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

1997 (1)

A. Lewis, Y. Albeck, Z. Lange, J. Benchowski, and G. Weizman, "Optical computation with negative light intensity with a plastic bacteriorhodopsin film," Science 275, 1462-1464 (1997).
[CrossRef]

1996 (2)

D. V. G. L. N. Rao, F. J. Aranda, D. Narayana Rao, Z. Chen, J. A. Akkara, and M. Nakashima, "All-optical logic gates with bacteriorhodopsin films," Opt. Commun. 127, 193-199 (1996).
[CrossRef]

J. Joseph, F. J. Aranda, D. V. G. L. N. Rao, J. A. Akkara, and M. Nakashima, "Optical Fourier processing using photoinduced dichroism in a bacteriorhodopsin film," Opt. Lett. 21, 1499-1501 (1996).
[CrossRef] [PubMed]

1995 (1)

F. J. Aranda, D. V. G. L. N. Rao, C. L. Wong, P. Zhou, Z. Chen, J. A. Akkara, D. L. Kaplan and J. F. Roach, "Nonlinear optical interactions in bacteriorhodopsin using Z-scan," Opt. Rev. 2, 204-206 (1995).
[CrossRef]

1994 (1)

1992 (1)

1991 (1)

1983 (1)

L. W. Hillman, R. W. Boyd, J. Krasinski and C. R. Stroud, "Observation of a spectral hole due to population oscillations in a homogeneously broadened optical absorption line," Opt. Commun. 45, 416-419 (1983).
[CrossRef]

1978 (1)

M. SargentIII, "Spectroscopic technique based on Lamb’s laser theory," Phys. Rep. 43, 223-265 (1978).
[CrossRef]

1967 (1)

S. E. Schwartz and T.Y. Tan, "Wave interactions in saturable absorbers," Appl. Phys. Lett. 10, 4-7 (1967).
[CrossRef]

1966 (1)

B. H. Soffer and B. B. McFarland, "Frequency locking and dye spectral hole burning in Q-spoiled lasers," Appl. Phys. Lett. 8, 166-169 (1966).
[CrossRef]

Akkara, J. A.

J. Joseph, F. J. Aranda, D. V. G. L. N. Rao, J. A. Akkara, and M. Nakashima, "Optical Fourier processing using photoinduced dichroism in a bacteriorhodopsin film," Opt. Lett. 21, 1499-1501 (1996).
[CrossRef] [PubMed]

D. V. G. L. N. Rao, F. J. Aranda, D. Narayana Rao, Z. Chen, J. A. Akkara, and M. Nakashima, "All-optical logic gates with bacteriorhodopsin films," Opt. Commun. 127, 193-199 (1996).
[CrossRef]

F. J. Aranda, D. V. G. L. N. Rao, C. L. Wong, P. Zhou, Z. Chen, J. A. Akkara, D. L. Kaplan and J. F. Roach, "Nonlinear optical interactions in bacteriorhodopsin using Z-scan," Opt. Rev. 2, 204-206 (1995).
[CrossRef]

Albeck, Y.

A. Lewis, Y. Albeck, Z. Lange, J. Benchowski, and G. Weizman, "Optical computation with negative light intensity with a plastic bacteriorhodopsin film," Science 275, 1462-1464 (1997).
[CrossRef]

Aranda, F. J.

C. S. Yelleswarapu, R. Philip, F. J. Aranda, B. R. Kimball and D. V. G. L. N. Rao, "Slow light in bacteriorhodopsin solution using coherent population oscillations," Opt. Lett. 32, 1788-1790 (2007).
[CrossRef] [PubMed]

D. V. G. L. N. Rao, F. J. Aranda, D. Narayana Rao, Z. Chen, J. A. Akkara, and M. Nakashima, "All-optical logic gates with bacteriorhodopsin films," Opt. Commun. 127, 193-199 (1996).
[CrossRef]

J. Joseph, F. J. Aranda, D. V. G. L. N. Rao, J. A. Akkara, and M. Nakashima, "Optical Fourier processing using photoinduced dichroism in a bacteriorhodopsin film," Opt. Lett. 21, 1499-1501 (1996).
[CrossRef] [PubMed]

F. J. Aranda, D. V. G. L. N. Rao, C. L. Wong, P. Zhou, Z. Chen, J. A. Akkara, D. L. Kaplan and J. F. Roach, "Nonlinear optical interactions in bacteriorhodopsin using Z-scan," Opt. Rev. 2, 204-206 (1995).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Benchowski, J.

A. Lewis, Y. Albeck, Z. Lange, J. Benchowski, and G. Weizman, "Optical computation with negative light intensity with a plastic bacteriorhodopsin film," Science 275, 1462-1464 (1997).
[CrossRef]

Bigelow, M.

Y. Okawachi, M. Bigelow, J. Sharping, Z. Zhu, A. Schweinsberg, D. Gauthier, R. Boyd, and A. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 1539021-1539024 (2005).
[CrossRef]

Bigelow, M. S.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, "Superluminal and slow light propagation in a room-temperature solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 1139031-1139034 (2003).
[CrossRef]

Boyd, R.

Y. Okawachi, M. Bigelow, J. Sharping, Z. Zhu, A. Schweinsberg, D. Gauthier, R. Boyd, and A. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 1539021-1539024 (2005).
[CrossRef]

Boyd, R. W.

G. Piredda and R. W. Boyd, "Slow light by means of coherent population oscillations: laser linewidth effects," J. Eur. Opt. Soc. Rap. Pub. 2,070041-070044 (2007).

D. Gauthier and R. W. Boyd, "Fast light, slow light and optical precursors: What does it all mean?," Photonics Spectra, January, 82-90 (2007).

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, "Superluminal and slow light propagation in a room-temperature solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 1139031-1139034 (2003).
[CrossRef]

L. W. Hillman, R. W. Boyd, J. Krasinski and C. R. Stroud, "Observation of a spectral hole due to population oscillations in a homogeneously broadened optical absorption line," Opt. Commun. 45, 416-419 (1983).
[CrossRef]

Brauchle, C.

Bräuchle, C.

Chakrabarti, S.

S. Chakrabarti, A. Pradhan, B. Ray, and P. N. Gosh, "Velocity selective optical pumping effects and electromagnetically induced transparency for D2 transitions in rubidium," J. Phys. B 38, 4321-4327 (2005).
[CrossRef]

Chang, S. W.

Chang-Hasnain, C. J.

Chen, X.

L. Li, X. Peng, C. Liu, H. Guo and X. Chen, "The transition time induced narrow linewidth of the electromagnetically induced transparency in cesium vapor," J. Phys. B 37, 1873-1878 (2004).
[CrossRef]

Chen, Z.

D. V. G. L. N. Rao, F. J. Aranda, D. Narayana Rao, Z. Chen, J. A. Akkara, and M. Nakashima, "All-optical logic gates with bacteriorhodopsin films," Opt. Commun. 127, 193-199 (1996).
[CrossRef]

F. J. Aranda, D. V. G. L. N. Rao, C. L. Wong, P. Zhou, Z. Chen, J. A. Akkara, D. L. Kaplan and J. F. Roach, "Nonlinear optical interactions in bacteriorhodopsin using Z-scan," Opt. Rev. 2, 204-206 (1995).
[CrossRef]

Chuang, S. L.

Downie, J. D.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Foanrev, A.

Gaeta, A.

Y. Okawachi, M. Bigelow, J. Sharping, Z. Zhu, A. Schweinsberg, D. Gauthier, R. Boyd, and A. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 1539021-1539024 (2005).
[CrossRef]

Gauthier, D.

D. Gauthier and R. W. Boyd, "Fast light, slow light and optical precursors: What does it all mean?," Photonics Spectra, January, 82-90 (2007).

Y. Okawachi, M. Bigelow, J. Sharping, Z. Zhu, A. Schweinsberg, D. Gauthier, R. Boyd, and A. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 1539021-1539024 (2005).
[CrossRef]

Gosh, P. N.

S. Chakrabarti, A. Pradhan, B. Ray, and P. N. Gosh, "Velocity selective optical pumping effects and electromagnetically induced transparency for D2 transitions in rubidium," J. Phys. B 38, 4321-4327 (2005).
[CrossRef]

Guo, H.

L. Li, X. Peng, C. Liu, H. Guo and X. Chen, "The transition time induced narrow linewidth of the electromagnetically induced transparency in cesium vapor," J. Phys. B 37, 1873-1878 (2004).
[CrossRef]

Hampp, N.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Hillman, L. W.

L. W. Hillman, R. W. Boyd, J. Krasinski and C. R. Stroud, "Observation of a spectral hole due to population oscillations in a homogeneously broadened optical absorption line," Opt. Commun. 45, 416-419 (1983).
[CrossRef]

Jarabo, S.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

Joseph, J.

Kaplan, D. L.

F. J. Aranda, D. V. G. L. N. Rao, C. L. Wong, P. Zhou, Z. Chen, J. A. Akkara, D. L. Kaplan and J. F. Roach, "Nonlinear optical interactions in bacteriorhodopsin using Z-scan," Opt. Rev. 2, 204-206 (1995).
[CrossRef]

Kimball, B. R.

Kozlov, G. G.

V. S. Zapasskii and G. G. Kozlov, "A saturable absorber, coherent, population oscillations and slow light," Opt. Spectrosc. 100, 419-424 (2006).
[CrossRef]

Krasinski, J.

L. W. Hillman, R. W. Boyd, J. Krasinski and C. R. Stroud, "Observation of a spectral hole due to population oscillations in a homogeneously broadened optical absorption line," Opt. Commun. 45, 416-419 (1983).
[CrossRef]

Kryzhanovsky, B. V.

Ku, P. C.

Lange, Z.

A. Lewis, Y. Albeck, Z. Lange, J. Benchowski, and G. Weizman, "Optical computation with negative light intensity with a plastic bacteriorhodopsin film," Science 275, 1462-1464 (1997).
[CrossRef]

Lepeshkin, N. N.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, "Superluminal and slow light propagation in a room-temperature solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 1139031-1139034 (2003).
[CrossRef]

Lewis, A.

A. Lewis, Y. Albeck, Z. Lange, J. Benchowski, and G. Weizman, "Optical computation with negative light intensity with a plastic bacteriorhodopsin film," Science 275, 1462-1464 (1997).
[CrossRef]

Li, L.

L. Li, X. Peng, C. Liu, H. Guo and X. Chen, "The transition time induced narrow linewidth of the electromagnetically induced transparency in cesium vapor," J. Phys. B 37, 1873-1878 (2004).
[CrossRef]

Li, T.

Liu, C.

L. Li, X. Peng, C. Liu, H. Guo and X. Chen, "The transition time induced narrow linewidth of the electromagnetically induced transparency in cesium vapor," J. Phys. B 37, 1873-1878 (2004).
[CrossRef]

McFarland, B. B.

B. H. Soffer and B. B. McFarland, "Frequency locking and dye spectral hole burning in Q-spoiled lasers," Appl. Phys. Lett. 8, 166-169 (1966).
[CrossRef]

Milkaelian, A. L.

Nakashima, M.

D. V. G. L. N. Rao, F. J. Aranda, D. Narayana Rao, Z. Chen, J. A. Akkara, and M. Nakashima, "All-optical logic gates with bacteriorhodopsin films," Opt. Commun. 127, 193-199 (1996).
[CrossRef]

J. Joseph, F. J. Aranda, D. V. G. L. N. Rao, J. A. Akkara, and M. Nakashima, "Optical Fourier processing using photoinduced dichroism in a bacteriorhodopsin film," Opt. Lett. 21, 1499-1501 (1996).
[CrossRef] [PubMed]

Narayana Rao, D.

D. V. G. L. N. Rao, F. J. Aranda, D. Narayana Rao, Z. Chen, J. A. Akkara, and M. Nakashima, "All-optical logic gates with bacteriorhodopsin films," Opt. Commun. 127, 193-199 (1996).
[CrossRef]

Oesterhelt, D.

Okawachi, Y.

Y. Okawachi, M. Bigelow, J. Sharping, Z. Zhu, A. Schweinsberg, D. Gauthier, R. Boyd, and A. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 1539021-1539024 (2005).
[CrossRef]

Palinginis, P.

Peng, X.

L. Li, X. Peng, C. Liu, H. Guo and X. Chen, "The transition time induced narrow linewidth of the electromagnetically induced transparency in cesium vapor," J. Phys. B 37, 1873-1878 (2004).
[CrossRef]

Philip, R.

Piredda, G.

G. Piredda and R. W. Boyd, "Slow light by means of coherent population oscillations: laser linewidth effects," J. Eur. Opt. Soc. Rap. Pub. 2,070041-070044 (2007).

Pradhan, A.

S. Chakrabarti, A. Pradhan, B. Ray, and P. N. Gosh, "Velocity selective optical pumping effects and electromagnetically induced transparency for D2 transitions in rubidium," J. Phys. B 38, 4321-4327 (2005).
[CrossRef]

Rao, D. V. G. L. N.

C. S. Yelleswarapu, R. Philip, F. J. Aranda, B. R. Kimball and D. V. G. L. N. Rao, "Slow light in bacteriorhodopsin solution using coherent population oscillations," Opt. Lett. 32, 1788-1790 (2007).
[CrossRef] [PubMed]

P. Wu and D. V. G. L. N. Rao, "Controllable snail-paced light in biological bacteriorhodopsin thin film," Phys. Rev. Lett. 95, 2536011-2536014 (2005).
[CrossRef]

J. Joseph, F. J. Aranda, D. V. G. L. N. Rao, J. A. Akkara, and M. Nakashima, "Optical Fourier processing using photoinduced dichroism in a bacteriorhodopsin film," Opt. Lett. 21, 1499-1501 (1996).
[CrossRef] [PubMed]

D. V. G. L. N. Rao, F. J. Aranda, D. Narayana Rao, Z. Chen, J. A. Akkara, and M. Nakashima, "All-optical logic gates with bacteriorhodopsin films," Opt. Commun. 127, 193-199 (1996).
[CrossRef]

F. J. Aranda, D. V. G. L. N. Rao, C. L. Wong, P. Zhou, Z. Chen, J. A. Akkara, D. L. Kaplan and J. F. Roach, "Nonlinear optical interactions in bacteriorhodopsin using Z-scan," Opt. Rev. 2, 204-206 (1995).
[CrossRef]

Ray, B.

S. Chakrabarti, A. Pradhan, B. Ray, and P. N. Gosh, "Velocity selective optical pumping effects and electromagnetically induced transparency for D2 transitions in rubidium," J. Phys. B 38, 4321-4327 (2005).
[CrossRef]

Roach, J. F.

F. J. Aranda, D. V. G. L. N. Rao, C. L. Wong, P. Zhou, Z. Chen, J. A. Akkara, D. L. Kaplan and J. F. Roach, "Nonlinear optical interactions in bacteriorhodopsin using Z-scan," Opt. Rev. 2, 204-206 (1995).
[CrossRef]

Salakhutdinov, V. K.

Sargent, M.

M. SargentIII, "Spectroscopic technique based on Lamb’s laser theory," Phys. Rep. 43, 223-265 (1978).
[CrossRef]

Schwartz, S. E.

S. E. Schwartz and T.Y. Tan, "Wave interactions in saturable absorbers," Appl. Phys. Lett. 10, 4-7 (1967).
[CrossRef]

Schweinsberg, A.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

Y. Okawachi, M. Bigelow, J. Sharping, Z. Zhu, A. Schweinsberg, D. Gauthier, R. Boyd, and A. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 1539021-1539024 (2005).
[CrossRef]

Sedgwick, F.

Sharping, J.

Y. Okawachi, M. Bigelow, J. Sharping, Z. Zhu, A. Schweinsberg, D. Gauthier, R. Boyd, and A. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 1539021-1539024 (2005).
[CrossRef]

Soffer, B. H.

B. H. Soffer and B. B. McFarland, "Frequency locking and dye spectral hole burning in Q-spoiled lasers," Appl. Phys. Lett. 8, 166-169 (1966).
[CrossRef]

Stroud, C. R.

L. W. Hillman, R. W. Boyd, J. Krasinski and C. R. Stroud, "Observation of a spectral hole due to population oscillations in a homogeneously broadened optical absorption line," Opt. Commun. 45, 416-419 (1983).
[CrossRef]

Tan, T.Y.

S. E. Schwartz and T.Y. Tan, "Wave interactions in saturable absorbers," Appl. Phys. Lett. 10, 4-7 (1967).
[CrossRef]

Thoma, R.

Wang, H.

Weizman, G.

A. Lewis, Y. Albeck, Z. Lange, J. Benchowski, and G. Weizman, "Optical computation with negative light intensity with a plastic bacteriorhodopsin film," Science 275, 1462-1464 (1997).
[CrossRef]

Wong, C. L.

F. J. Aranda, D. V. G. L. N. Rao, C. L. Wong, P. Zhou, Z. Chen, J. A. Akkara, D. L. Kaplan and J. F. Roach, "Nonlinear optical interactions in bacteriorhodopsin using Z-scan," Opt. Rev. 2, 204-206 (1995).
[CrossRef]

Wu, P.

P. Wu and D. V. G. L. N. Rao, "Controllable snail-paced light in biological bacteriorhodopsin thin film," Phys. Rev. Lett. 95, 2536011-2536014 (2005).
[CrossRef]

Yelleswarapu, C. S.

Zapasskii, V. S.

V. S. Zapasskii and G. G. Kozlov, "A saturable absorber, coherent, population oscillations and slow light," Opt. Spectrosc. 100, 419-424 (2006).
[CrossRef]

Zhou, P.

F. J. Aranda, D. V. G. L. N. Rao, C. L. Wong, P. Zhou, Z. Chen, J. A. Akkara, D. L. Kaplan and J. F. Roach, "Nonlinear optical interactions in bacteriorhodopsin using Z-scan," Opt. Rev. 2, 204-206 (1995).
[CrossRef]

Zhu, Z.

Y. Okawachi, M. Bigelow, J. Sharping, Z. Zhu, A. Schweinsberg, D. Gauthier, R. Boyd, and A. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 1539021-1539024 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. E. Schwartz and T.Y. Tan, "Wave interactions in saturable absorbers," Appl. Phys. Lett. 10, 4-7 (1967).
[CrossRef]

B. H. Soffer and B. B. McFarland, "Frequency locking and dye spectral hole burning in Q-spoiled lasers," Appl. Phys. Lett. 8, 166-169 (1966).
[CrossRef]

Europhys. Lett. (1)

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

J. Eur. Opt. Soc. Rap. Pub. (1)

G. Piredda and R. W. Boyd, "Slow light by means of coherent population oscillations: laser linewidth effects," J. Eur. Opt. Soc. Rap. Pub. 2,070041-070044 (2007).

J. Phys. B (2)

L. Li, X. Peng, C. Liu, H. Guo and X. Chen, "The transition time induced narrow linewidth of the electromagnetically induced transparency in cesium vapor," J. Phys. B 37, 1873-1878 (2004).
[CrossRef]

S. Chakrabarti, A. Pradhan, B. Ray, and P. N. Gosh, "Velocity selective optical pumping effects and electromagnetically induced transparency for D2 transitions in rubidium," J. Phys. B 38, 4321-4327 (2005).
[CrossRef]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Opt. Commun. (2)

L. W. Hillman, R. W. Boyd, J. Krasinski and C. R. Stroud, "Observation of a spectral hole due to population oscillations in a homogeneously broadened optical absorption line," Opt. Commun. 45, 416-419 (1983).
[CrossRef]

D. V. G. L. N. Rao, F. J. Aranda, D. Narayana Rao, Z. Chen, J. A. Akkara, and M. Nakashima, "All-optical logic gates with bacteriorhodopsin films," Opt. Commun. 127, 193-199 (1996).
[CrossRef]

Opt. Lett. (5)

Opt. Rev. (1)

F. J. Aranda, D. V. G. L. N. Rao, C. L. Wong, P. Zhou, Z. Chen, J. A. Akkara, D. L. Kaplan and J. F. Roach, "Nonlinear optical interactions in bacteriorhodopsin using Z-scan," Opt. Rev. 2, 204-206 (1995).
[CrossRef]

Opt. Spectrosc. (1)

V. S. Zapasskii and G. G. Kozlov, "A saturable absorber, coherent, population oscillations and slow light," Opt. Spectrosc. 100, 419-424 (2006).
[CrossRef]

Photonics Spectra (1)

D. Gauthier and R. W. Boyd, "Fast light, slow light and optical precursors: What does it all mean?," Photonics Spectra, January, 82-90 (2007).

Phys. Rep. (1)

M. SargentIII, "Spectroscopic technique based on Lamb’s laser theory," Phys. Rep. 43, 223-265 (1978).
[CrossRef]

Phys. Rev. Lett. (3)

P. Wu and D. V. G. L. N. Rao, "Controllable snail-paced light in biological bacteriorhodopsin thin film," Phys. Rev. Lett. 95, 2536011-2536014 (2005).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 1139031-1139034 (2003).
[CrossRef]

Y. Okawachi, M. Bigelow, J. Sharping, Z. Zhu, A. Schweinsberg, D. Gauthier, R. Boyd, and A. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 1539021-1539024 (2005).
[CrossRef]

Science (2)

A. Lewis, Y. Albeck, Z. Lange, J. Benchowski, and G. Weizman, "Optical computation with negative light intensity with a plastic bacteriorhodopsin film," Science 275, 1462-1464 (1997).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, "Superluminal and slow light propagation in a room-temperature solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

bR photocycle. (a) Upon excitation with photon hν1 the molecule goes through several short lived intermediate states to the relatively long-lived M state. The molecule goes back to the B state via thermal relaxation with lifetime of ~5ms or a blue photon hν2 stimulates the photochemical relaxation to the B state. The numbers next to the letters indicate the peak absorption in nanometers. (b) Equivalent two-level model used for practical purposes.

Fig. 2.
Fig. 2.

Schematic of the experimental setup used for the observation of superluminal and slow light.

Fig. 3.
Fig. 3.

Oscilloscope traces depicting the signal (red line) and reference (blue line) pulses: (a) with no sample in the signal arm, the signal and reference pulses overlap one on top of the other; (b) for 647 nm input beam and input power of 200 mW, the signal pulse advances relative to the reference pulse; (c) for 570 nm input beam and input power of 200 mW, the signal pulse is delayed relative to the reference pulse. By varying the modulation frequency either the delay or the advancement can be changed.

Fig. 4.
Fig. 4.

Experimental observation of superluminal light for the pump wavelength of 647 nm and input power of 200 mW in bacteriorhodopsin solution of OD = 1. Dashed line represents the frequency above which the superluminal light makes gradual transition to slow light.

Fig. 5.
Fig. 5.

Dependence of superluminal light pulse advancement with input power for modulation frequencies at 10 Hz (circles) and 25 Hz (squares).

Fig. 6(a).
Fig. 6(a).

Coherent Population oscillation in bR solution for 647.1 nm pump wavelength. The plot shows the variation of probe attenuation (closed squares) and pulse advancement (open squares) with the modulation frequency. Note that the probe attenuation and pulse advancement coincide in the superluminal light regime, up to about 40 Hz.

Fig. 6(b).
Fig. 6(b).

Blowup of Fig. 6(a), plotted from 25 Hz to 225 Hz modulation frequency to show that probe attenuation (closed squares) coincides with the pulse delay (open squares) in the slow light regime also, above about 40 Hz.

Fig. 7.
Fig. 7.

CPO in bR solution for the pump at 568.2 nm. The plot shows the variation of probe attenuation (closed squares) and the slow light pulse delay (open squares) with the modulation frequency. Note that there is a close correlation between the profile of spectral hole and the associated pulse delay.

Metrics