Abstract

A technique is described for calibrating the amplitude of motion of a phase mask typically used for inscribing fibre Bragg grating (FBG) structures. The motion of the phase mask is detected using a simple Michelson interferometer that can be readily mounted onto an FBG writing system. The output of the interferometer provides a direct indication of the phase mask motion as a function of the true periodicity of the phase mask structure and so is ideally suited to inscription of apodised or phase shifted FBG structures. The technique can be automated and can achieve accuracies of ±1 nm in approximately 1 minute.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Giles, "Lightwave Applications of Fiber Bragg Gratings," J. Lightwave Technol. 15, 1391-1404 (1997).
    [CrossRef]
  2. T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S.Y. Liu, W. H. Chung, and L.K. Cheng, "Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation monitoring," Eng. Struct. 28, 648-659 (2006).
    [CrossRef]
  3. J. W. Arkwright,  et al, "Design and clinical results from a fibre optic manometry catheter for oesophageal motility studies," International Conference on Optical Fibre Sensors (OFS-19), (2008), Perth, Australia
  4. K. O. Hill and G. Meltz, "Fiber Bragg Grating Technology Fundamentals and Overview," J. Lightwave Technol. 15, 1263-1276 (1997).
    [CrossRef]
  5. G. W. Yoffe, J. W. Arkwright, and B. C. Smith, "Flexible and stable interferometer for fabricating fiber Bragg gratings," OSA Tech. Dig. 22, 93-95 (1993).
  6. G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 14, 823 (1989).
    [CrossRef] [PubMed]
  7. M. J. Cole, W. H. Loh, R. I. Laming, M. Zervas, and S. Barcelos, "Moving fibre/phase mask -scanning beam technique for enhances flexibility in producing fibre gratings with a uniform phase mask," Electron. Lett. 31, 1488-1489 (1995).
    [CrossRef]

2006 (1)

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S.Y. Liu, W. H. Chung, and L.K. Cheng, "Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation monitoring," Eng. Struct. 28, 648-659 (2006).
[CrossRef]

1997 (2)

K. O. Hill and G. Meltz, "Fiber Bragg Grating Technology Fundamentals and Overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

C. R. Giles, "Lightwave Applications of Fiber Bragg Gratings," J. Lightwave Technol. 15, 1391-1404 (1997).
[CrossRef]

1995 (1)

M. J. Cole, W. H. Loh, R. I. Laming, M. Zervas, and S. Barcelos, "Moving fibre/phase mask -scanning beam technique for enhances flexibility in producing fibre gratings with a uniform phase mask," Electron. Lett. 31, 1488-1489 (1995).
[CrossRef]

1993 (1)

G. W. Yoffe, J. W. Arkwright, and B. C. Smith, "Flexible and stable interferometer for fabricating fiber Bragg gratings," OSA Tech. Dig. 22, 93-95 (1993).

1989 (1)

Arkwright, J. W.

G. W. Yoffe, J. W. Arkwright, and B. C. Smith, "Flexible and stable interferometer for fabricating fiber Bragg gratings," OSA Tech. Dig. 22, 93-95 (1993).

Barcelos, S.

M. J. Cole, W. H. Loh, R. I. Laming, M. Zervas, and S. Barcelos, "Moving fibre/phase mask -scanning beam technique for enhances flexibility in producing fibre gratings with a uniform phase mask," Electron. Lett. 31, 1488-1489 (1995).
[CrossRef]

Chan, T. H. T.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S.Y. Liu, W. H. Chung, and L.K. Cheng, "Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation monitoring," Eng. Struct. 28, 648-659 (2006).
[CrossRef]

Cheng, L.K.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S.Y. Liu, W. H. Chung, and L.K. Cheng, "Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation monitoring," Eng. Struct. 28, 648-659 (2006).
[CrossRef]

Chung, W. H.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S.Y. Liu, W. H. Chung, and L.K. Cheng, "Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation monitoring," Eng. Struct. 28, 648-659 (2006).
[CrossRef]

Cole, M. J.

M. J. Cole, W. H. Loh, R. I. Laming, M. Zervas, and S. Barcelos, "Moving fibre/phase mask -scanning beam technique for enhances flexibility in producing fibre gratings with a uniform phase mask," Electron. Lett. 31, 1488-1489 (1995).
[CrossRef]

Giles, C. R.

C. R. Giles, "Lightwave Applications of Fiber Bragg Gratings," J. Lightwave Technol. 15, 1391-1404 (1997).
[CrossRef]

Hill, K. O.

K. O. Hill and G. Meltz, "Fiber Bragg Grating Technology Fundamentals and Overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

Laming, R. I.

M. J. Cole, W. H. Loh, R. I. Laming, M. Zervas, and S. Barcelos, "Moving fibre/phase mask -scanning beam technique for enhances flexibility in producing fibre gratings with a uniform phase mask," Electron. Lett. 31, 1488-1489 (1995).
[CrossRef]

Liu, S.Y.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S.Y. Liu, W. H. Chung, and L.K. Cheng, "Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation monitoring," Eng. Struct. 28, 648-659 (2006).
[CrossRef]

Loh, W. H.

M. J. Cole, W. H. Loh, R. I. Laming, M. Zervas, and S. Barcelos, "Moving fibre/phase mask -scanning beam technique for enhances flexibility in producing fibre gratings with a uniform phase mask," Electron. Lett. 31, 1488-1489 (1995).
[CrossRef]

Meltz,

Meltz, G.

K. O. Hill and G. Meltz, "Fiber Bragg Grating Technology Fundamentals and Overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

Ni, Y. Q.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S.Y. Liu, W. H. Chung, and L.K. Cheng, "Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation monitoring," Eng. Struct. 28, 648-659 (2006).
[CrossRef]

Smith, B. C.

G. W. Yoffe, J. W. Arkwright, and B. C. Smith, "Flexible and stable interferometer for fabricating fiber Bragg gratings," OSA Tech. Dig. 22, 93-95 (1993).

Tam, H. Y.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S.Y. Liu, W. H. Chung, and L.K. Cheng, "Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation monitoring," Eng. Struct. 28, 648-659 (2006).
[CrossRef]

Yoffe, G. W.

G. W. Yoffe, J. W. Arkwright, and B. C. Smith, "Flexible and stable interferometer for fabricating fiber Bragg gratings," OSA Tech. Dig. 22, 93-95 (1993).

Yu, L.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S.Y. Liu, W. H. Chung, and L.K. Cheng, "Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation monitoring," Eng. Struct. 28, 648-659 (2006).
[CrossRef]

Zervas, M.

M. J. Cole, W. H. Loh, R. I. Laming, M. Zervas, and S. Barcelos, "Moving fibre/phase mask -scanning beam technique for enhances flexibility in producing fibre gratings with a uniform phase mask," Electron. Lett. 31, 1488-1489 (1995).
[CrossRef]

Electron. Lett. (1)

M. J. Cole, W. H. Loh, R. I. Laming, M. Zervas, and S. Barcelos, "Moving fibre/phase mask -scanning beam technique for enhances flexibility in producing fibre gratings with a uniform phase mask," Electron. Lett. 31, 1488-1489 (1995).
[CrossRef]

Eng. Struct. (1)

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S.Y. Liu, W. H. Chung, and L.K. Cheng, "Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation monitoring," Eng. Struct. 28, 648-659 (2006).
[CrossRef]

J. Lightwave Technol. (2)

K. O. Hill and G. Meltz, "Fiber Bragg Grating Technology Fundamentals and Overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

C. R. Giles, "Lightwave Applications of Fiber Bragg Gratings," J. Lightwave Technol. 15, 1391-1404 (1997).
[CrossRef]

Opt. Lett. (1)

OSA Tech. Dig. (1)

G. W. Yoffe, J. W. Arkwright, and B. C. Smith, "Flexible and stable interferometer for fabricating fiber Bragg gratings," OSA Tech. Dig. 22, 93-95 (1993).

Other (1)

J. W. Arkwright,  et al, "Design and clinical results from a fibre optic manometry catheter for oesophageal motility studies," International Conference on Optical Fibre Sensors (OFS-19), (2008), Perth, Australia

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Typical layout for side-writing of a fibre Bragg grating using a transmission phase mask. The outgoing UV beams are marked with their respective diffraction orders.

Fig. 2.
Fig. 2.

Schematic of the action of phase mask motion on the transmitted phase fronts through a diffraction grating. Note that as the phase mask is translated to the right, the phase fronts in the +1 diffracted order advance.

Fig. 3.
Fig. 3.

Set up of the PMI showing locations and fixturing of the retro-reflecting mirrors and beam splitter cube for detecting the intensity of the reflected interference spot

Fig. 4.
Fig. 4.

Detected intensity in the retro-reflected spot.

Fig. 5.
Fig. 5.

Detected intensities from the PMI during steady state calibration of discrete phase mask motion, showing (a) optimum oscillation amplitude using a square wave oscillation amplitude of 268 mV, (b) insufficient oscillation amplitude using a square wave oscillation amplitude of 267 mV, and (c) excessive oscillation amplitude using a square wave oscillation amplitude of 269 mV.

Fig. 6.
Fig. 6.

Response of the phase mask to a square wave motion of the piezo-electric translation stage optimised using the proprietary driver supplied with the stage. (a) stage motion measured by the on-board capacitive sensor, (b) motion of the phase mask measured using the PMI.

Fig. 7.
Fig. 7.

Response of the phase mask to a square wave motion of the piezo-electric translation stage optimised using the PMI output. (a) stage motion, (b) motion of the phase mask measured using the PMI.

Metrics