Abstract

An experimental demonstration of a classical analogue of the quantum Zeno effect for light waves propagating in engineered arrays of tunneling-coupled optical waveguides is reported. Quantitative mapping of the flow of light, based on scanning tunneling optical microscopy, clearly demonstrates that the escape dynamics of light in an optical waveguide side-coupled to a tight-binding continuum is slowed down when projective measurements, mimicked by sequential interruptions of the decay, are performed on the system.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Misra and E. C. G. Sudarshan, “The Zeno’s Paradox in Quantum Theory,” J. Math. Phys. 18, 756–763 (1977).
    [Crossref]
  2. W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno Effect,” Phys. Rev. A 41, 2295–2300 (1990).
    [Crossref] [PubMed]
  3. P. Knight, “Watching a Laser Hot-Pot,” Nature (London)  344, 493–494 (1990).
    [Crossref]
  4. H. Nakazato, M. Namiki, and S. Pascazio, “Temporal behavior of Quantum Mechanical Systems,” Int. J. Mod. Phys. B 10, 247–295 (1996).
    [Crossref]
  5. A.G. Kofman and G. Kurizki, “Quantum Zeno effect on atomic excitation decay in resonators,” Phys. Rev. A 54, R3750–R3753 (1996).
    [Crossref] [PubMed]
  6. M. Lewenstein and K. Rza̧zewski, “Quantum Anti-Zeno Effect,” Phys. Rev. A 61, 022105-1-022105-5 (2000).
    [Crossref]
  7. A.G. Kofman and G. Kurizki, “Acceleration of Quantum Decay processes by frequent observations,” Nature (London)  405, 546–550 (2000).
    [Crossref] [PubMed]
  8. A.G. Kofman and G. Kurizki, “Universal Dynamical Control of Quantum Mechanical Decay: Modulation of the Coupling to the Continuum,” Phys. Rev. Lett.87, 270405-1-270405-4 (2001).
    [Crossref]
  9. P. Facchi, H. Nakazato, and S. Pascazio, “From the Quantum Zeno to the Inverse Quantum Zeno Effect,” Phys. Rev. Lett. 86, 2699–2703 (2001).
    [Crossref] [PubMed]
  10. P. Facchi and S. Pascazio, Progress in Optics, E. Wolf, ed., (Elsevier, Amsterdam, 2001), Vol. 42, p. 147.
  11. E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and Pulsed Quantum Zeno Effect,” Phys. Rev. Lett. 97, 260402-1-260402-4 (2006).
    [Crossref]
  12. P. Facchi and S. Pascazio, “Quantum Zeno Subspaces,” Phys. Rev. Lett. 89, 080401-1-080401-4 (2002).
    [Crossref] [PubMed]
  13. K. Koshino and A. Shimizu, “Quantum Zeno Effect for exponentially decaying systems,” Phys. Rev. Lett. 92, 030401-1-030401-4 (2004).
  14. A. Peres, “Zeno Paradox in Quantum Theory,” Am J. Phys.48, 931–932 (1980); G.S. Agarwal and S. P. Tewari, “An all-optical realization of quantum zeno effect,” Phys. Lett. A 185, 139–142 (1994); M. Kitano, “Quantum Zeno Effect and intracavity polarization filters,” Opt. Commun. 141, 39–42 (1997); V. Kidambi, A. Widom, C. Lerner, and Y. N. Srivastava, “Photon polarization measurements without the Quantum Zeno Effect,” Am. J. Phys. 68, 475–481 (2000); K. Yamane, M. Ito, and M. Kitano, “Quantum Zeno Effect in Optical Fibers,” Opt. Commun. 192, 299–307 (2001).
    [Crossref]
  15. M.C. Fischer, B. Gutierrez-Medina, and M.G. Raizen, “Observation of the Quantum Zeno and Anti-Zeno Effects in an unstable system,” Phys. Rev. Lett.87, 040402-1-040402-4 (2001).
    [Crossref] [PubMed]
  16. See, for instance: D. Dragoman and M. Dragoman, Quantum-Classical Analogies (Springer, Berlin, 2004) and references therein.
  17. S. Longhi, “Nonexponential decay via tunneling in tight-binding lattices and the optical zeno effect,” Phys. Rev. Lett.97, 110402-1-110402-4 (2006).
    [Crossref] [PubMed]
  18. S. Longhi, “Control of Photon Tunneling in Optical Waveguides,” Opt. Lett.32, 557–559 (2007); “Decay of a nonlinear impurity in a structured continuum from a nonlinear Fano-Anderson model,” Phys. Rev. B 75, 184306-1-184306-12 (2007); “Non-Markovian decay and lasing condition in an optical microcavity coupled to a structured reservoir,” Phys. Rev. A 74, 063826-1-063826-14 (2006).
    [Crossref] [PubMed]
  19. I. Antoniou, E. Karpov, G. Pronko, and E. Yarevsky, “Quantum Zeno and anti-Zeno effects in the Friedrichs model,” Phys. Rev. A 63, 062110-1-062110-10 (2001).
    [Crossref]
  20. G. Della Valle, S. Longhi, P. Laporta, P. Biagioni, L. Duò, and M. Finazzi, “Discrete diffraction in waveguide arrays: A quantitative analysis by tunneling optical microscopy,” Appl. Phys. Lett. 90, 261118-1-261118-3 (2007).
    [Crossref]
  21. S.I. Bozhevolnyi and L. Kuipers, “Near-field characterization of photonic crystal waveguides,” Semicond. Sci. Technol. 21, R1–R16 (2006).
    [Crossref]
  22. D.N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
    [Crossref] [PubMed]
  23. G. Della Valle, S. Taccheo, P. Laporta, G. Sorbello, E. Cianci, and V. Foglietti, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42, 632–633 (2006).
    [Crossref]
  24. AlphaSNOM, WITec GmbH, Ulm, Germany.
  25. A. Szameit, F. Dreisow, T. Pertsch, S. Nolte, and A. Tünnermann, “Control of directional evanescent coupling in fs laser written waveguides,” Opt. Express 15, 1579–1587 (2007).
    [Crossref] [PubMed]
  26. BeamPROP, 5.0 ed., Rsoft Design Group, Inc., 2002.

2007 (2)

G. Della Valle, S. Longhi, P. Laporta, P. Biagioni, L. Duò, and M. Finazzi, “Discrete diffraction in waveguide arrays: A quantitative analysis by tunneling optical microscopy,” Appl. Phys. Lett. 90, 261118-1-261118-3 (2007).
[Crossref]

A. Szameit, F. Dreisow, T. Pertsch, S. Nolte, and A. Tünnermann, “Control of directional evanescent coupling in fs laser written waveguides,” Opt. Express 15, 1579–1587 (2007).
[Crossref] [PubMed]

2006 (3)

G. Della Valle, S. Taccheo, P. Laporta, G. Sorbello, E. Cianci, and V. Foglietti, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42, 632–633 (2006).
[Crossref]

S.I. Bozhevolnyi and L. Kuipers, “Near-field characterization of photonic crystal waveguides,” Semicond. Sci. Technol. 21, R1–R16 (2006).
[Crossref]

E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and Pulsed Quantum Zeno Effect,” Phys. Rev. Lett. 97, 260402-1-260402-4 (2006).
[Crossref]

2004 (1)

K. Koshino and A. Shimizu, “Quantum Zeno Effect for exponentially decaying systems,” Phys. Rev. Lett. 92, 030401-1-030401-4 (2004).

2003 (1)

D.N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[Crossref] [PubMed]

2002 (1)

P. Facchi and S. Pascazio, “Quantum Zeno Subspaces,” Phys. Rev. Lett. 89, 080401-1-080401-4 (2002).
[Crossref] [PubMed]

2001 (2)

I. Antoniou, E. Karpov, G. Pronko, and E. Yarevsky, “Quantum Zeno and anti-Zeno effects in the Friedrichs model,” Phys. Rev. A 63, 062110-1-062110-10 (2001).
[Crossref]

P. Facchi, H. Nakazato, and S. Pascazio, “From the Quantum Zeno to the Inverse Quantum Zeno Effect,” Phys. Rev. Lett. 86, 2699–2703 (2001).
[Crossref] [PubMed]

2000 (2)

M. Lewenstein and K. Rza̧zewski, “Quantum Anti-Zeno Effect,” Phys. Rev. A 61, 022105-1-022105-5 (2000).
[Crossref]

A.G. Kofman and G. Kurizki, “Acceleration of Quantum Decay processes by frequent observations,” Nature (London)  405, 546–550 (2000).
[Crossref] [PubMed]

1996 (2)

H. Nakazato, M. Namiki, and S. Pascazio, “Temporal behavior of Quantum Mechanical Systems,” Int. J. Mod. Phys. B 10, 247–295 (1996).
[Crossref]

A.G. Kofman and G. Kurizki, “Quantum Zeno effect on atomic excitation decay in resonators,” Phys. Rev. A 54, R3750–R3753 (1996).
[Crossref] [PubMed]

1990 (2)

W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno Effect,” Phys. Rev. A 41, 2295–2300 (1990).
[Crossref] [PubMed]

P. Knight, “Watching a Laser Hot-Pot,” Nature (London)  344, 493–494 (1990).
[Crossref]

1977 (1)

B. Misra and E. C. G. Sudarshan, “The Zeno’s Paradox in Quantum Theory,” J. Math. Phys. 18, 756–763 (1977).
[Crossref]

Antoniou, I.

I. Antoniou, E. Karpov, G. Pronko, and E. Yarevsky, “Quantum Zeno and anti-Zeno effects in the Friedrichs model,” Phys. Rev. A 63, 062110-1-062110-10 (2001).
[Crossref]

Biagioni, P.

G. Della Valle, S. Longhi, P. Laporta, P. Biagioni, L. Duò, and M. Finazzi, “Discrete diffraction in waveguide arrays: A quantitative analysis by tunneling optical microscopy,” Appl. Phys. Lett. 90, 261118-1-261118-3 (2007).
[Crossref]

Bollinger, J. J.

W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno Effect,” Phys. Rev. A 41, 2295–2300 (1990).
[Crossref] [PubMed]

Boyd, M.

E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and Pulsed Quantum Zeno Effect,” Phys. Rev. Lett. 97, 260402-1-260402-4 (2006).
[Crossref]

Bozhevolnyi, S.I.

S.I. Bozhevolnyi and L. Kuipers, “Near-field characterization of photonic crystal waveguides,” Semicond. Sci. Technol. 21, R1–R16 (2006).
[Crossref]

Campbell, G. K.

E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and Pulsed Quantum Zeno Effect,” Phys. Rev. Lett. 97, 260402-1-260402-4 (2006).
[Crossref]

Christodoulides, D.N.

D.N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[Crossref] [PubMed]

Cianci, E.

G. Della Valle, S. Taccheo, P. Laporta, G. Sorbello, E. Cianci, and V. Foglietti, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42, 632–633 (2006).
[Crossref]

Dragoman, D.

See, for instance: D. Dragoman and M. Dragoman, Quantum-Classical Analogies (Springer, Berlin, 2004) and references therein.

Dragoman, M.

See, for instance: D. Dragoman and M. Dragoman, Quantum-Classical Analogies (Springer, Berlin, 2004) and references therein.

Dreisow, F.

Duò, L.

G. Della Valle, S. Longhi, P. Laporta, P. Biagioni, L. Duò, and M. Finazzi, “Discrete diffraction in waveguide arrays: A quantitative analysis by tunneling optical microscopy,” Appl. Phys. Lett. 90, 261118-1-261118-3 (2007).
[Crossref]

Facchi, P.

P. Facchi and S. Pascazio, “Quantum Zeno Subspaces,” Phys. Rev. Lett. 89, 080401-1-080401-4 (2002).
[Crossref] [PubMed]

P. Facchi, H. Nakazato, and S. Pascazio, “From the Quantum Zeno to the Inverse Quantum Zeno Effect,” Phys. Rev. Lett. 86, 2699–2703 (2001).
[Crossref] [PubMed]

P. Facchi and S. Pascazio, Progress in Optics, E. Wolf, ed., (Elsevier, Amsterdam, 2001), Vol. 42, p. 147.

Finazzi, M.

G. Della Valle, S. Longhi, P. Laporta, P. Biagioni, L. Duò, and M. Finazzi, “Discrete diffraction in waveguide arrays: A quantitative analysis by tunneling optical microscopy,” Appl. Phys. Lett. 90, 261118-1-261118-3 (2007).
[Crossref]

Fischer, M.C.

M.C. Fischer, B. Gutierrez-Medina, and M.G. Raizen, “Observation of the Quantum Zeno and Anti-Zeno Effects in an unstable system,” Phys. Rev. Lett.87, 040402-1-040402-4 (2001).
[Crossref] [PubMed]

Foglietti, V.

G. Della Valle, S. Taccheo, P. Laporta, G. Sorbello, E. Cianci, and V. Foglietti, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42, 632–633 (2006).
[Crossref]

Gutierrez-Medina, B.

M.C. Fischer, B. Gutierrez-Medina, and M.G. Raizen, “Observation of the Quantum Zeno and Anti-Zeno Effects in an unstable system,” Phys. Rev. Lett.87, 040402-1-040402-4 (2001).
[Crossref] [PubMed]

Heinzen, D. J.

W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno Effect,” Phys. Rev. A 41, 2295–2300 (1990).
[Crossref] [PubMed]

Itano, W. M.

W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno Effect,” Phys. Rev. A 41, 2295–2300 (1990).
[Crossref] [PubMed]

Karpov, E.

I. Antoniou, E. Karpov, G. Pronko, and E. Yarevsky, “Quantum Zeno and anti-Zeno effects in the Friedrichs model,” Phys. Rev. A 63, 062110-1-062110-10 (2001).
[Crossref]

Ketterle, W.

E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and Pulsed Quantum Zeno Effect,” Phys. Rev. Lett. 97, 260402-1-260402-4 (2006).
[Crossref]

Knight, P.

P. Knight, “Watching a Laser Hot-Pot,” Nature (London)  344, 493–494 (1990).
[Crossref]

Kofman, A.G.

A.G. Kofman and G. Kurizki, “Acceleration of Quantum Decay processes by frequent observations,” Nature (London)  405, 546–550 (2000).
[Crossref] [PubMed]

A.G. Kofman and G. Kurizki, “Quantum Zeno effect on atomic excitation decay in resonators,” Phys. Rev. A 54, R3750–R3753 (1996).
[Crossref] [PubMed]

A.G. Kofman and G. Kurizki, “Universal Dynamical Control of Quantum Mechanical Decay: Modulation of the Coupling to the Continuum,” Phys. Rev. Lett.87, 270405-1-270405-4 (2001).
[Crossref]

Koshino, K.

K. Koshino and A. Shimizu, “Quantum Zeno Effect for exponentially decaying systems,” Phys. Rev. Lett. 92, 030401-1-030401-4 (2004).

Kuipers, L.

S.I. Bozhevolnyi and L. Kuipers, “Near-field characterization of photonic crystal waveguides,” Semicond. Sci. Technol. 21, R1–R16 (2006).
[Crossref]

Kurizki, G.

A.G. Kofman and G. Kurizki, “Acceleration of Quantum Decay processes by frequent observations,” Nature (London)  405, 546–550 (2000).
[Crossref] [PubMed]

A.G. Kofman and G. Kurizki, “Quantum Zeno effect on atomic excitation decay in resonators,” Phys. Rev. A 54, R3750–R3753 (1996).
[Crossref] [PubMed]

A.G. Kofman and G. Kurizki, “Universal Dynamical Control of Quantum Mechanical Decay: Modulation of the Coupling to the Continuum,” Phys. Rev. Lett.87, 270405-1-270405-4 (2001).
[Crossref]

Laporta, P.

G. Della Valle, S. Longhi, P. Laporta, P. Biagioni, L. Duò, and M. Finazzi, “Discrete diffraction in waveguide arrays: A quantitative analysis by tunneling optical microscopy,” Appl. Phys. Lett. 90, 261118-1-261118-3 (2007).
[Crossref]

G. Della Valle, S. Taccheo, P. Laporta, G. Sorbello, E. Cianci, and V. Foglietti, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42, 632–633 (2006).
[Crossref]

Lederer, F.

D.N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[Crossref] [PubMed]

Lewenstein, M.

M. Lewenstein and K. Rza̧zewski, “Quantum Anti-Zeno Effect,” Phys. Rev. A 61, 022105-1-022105-5 (2000).
[Crossref]

Longhi, S.

G. Della Valle, S. Longhi, P. Laporta, P. Biagioni, L. Duò, and M. Finazzi, “Discrete diffraction in waveguide arrays: A quantitative analysis by tunneling optical microscopy,” Appl. Phys. Lett. 90, 261118-1-261118-3 (2007).
[Crossref]

S. Longhi, “Nonexponential decay via tunneling in tight-binding lattices and the optical zeno effect,” Phys. Rev. Lett.97, 110402-1-110402-4 (2006).
[Crossref] [PubMed]

S. Longhi, “Control of Photon Tunneling in Optical Waveguides,” Opt. Lett.32, 557–559 (2007); “Decay of a nonlinear impurity in a structured continuum from a nonlinear Fano-Anderson model,” Phys. Rev. B 75, 184306-1-184306-12 (2007); “Non-Markovian decay and lasing condition in an optical microcavity coupled to a structured reservoir,” Phys. Rev. A 74, 063826-1-063826-14 (2006).
[Crossref] [PubMed]

Medley, P.

E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and Pulsed Quantum Zeno Effect,” Phys. Rev. Lett. 97, 260402-1-260402-4 (2006).
[Crossref]

Misra, B.

B. Misra and E. C. G. Sudarshan, “The Zeno’s Paradox in Quantum Theory,” J. Math. Phys. 18, 756–763 (1977).
[Crossref]

Mun, J.

E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and Pulsed Quantum Zeno Effect,” Phys. Rev. Lett. 97, 260402-1-260402-4 (2006).
[Crossref]

Nakazato, H.

P. Facchi, H. Nakazato, and S. Pascazio, “From the Quantum Zeno to the Inverse Quantum Zeno Effect,” Phys. Rev. Lett. 86, 2699–2703 (2001).
[Crossref] [PubMed]

H. Nakazato, M. Namiki, and S. Pascazio, “Temporal behavior of Quantum Mechanical Systems,” Int. J. Mod. Phys. B 10, 247–295 (1996).
[Crossref]

Namiki, M.

H. Nakazato, M. Namiki, and S. Pascazio, “Temporal behavior of Quantum Mechanical Systems,” Int. J. Mod. Phys. B 10, 247–295 (1996).
[Crossref]

Nolte, S.

Pascazio, S.

P. Facchi and S. Pascazio, “Quantum Zeno Subspaces,” Phys. Rev. Lett. 89, 080401-1-080401-4 (2002).
[Crossref] [PubMed]

P. Facchi, H. Nakazato, and S. Pascazio, “From the Quantum Zeno to the Inverse Quantum Zeno Effect,” Phys. Rev. Lett. 86, 2699–2703 (2001).
[Crossref] [PubMed]

H. Nakazato, M. Namiki, and S. Pascazio, “Temporal behavior of Quantum Mechanical Systems,” Int. J. Mod. Phys. B 10, 247–295 (1996).
[Crossref]

P. Facchi and S. Pascazio, Progress in Optics, E. Wolf, ed., (Elsevier, Amsterdam, 2001), Vol. 42, p. 147.

Peres, A.

A. Peres, “Zeno Paradox in Quantum Theory,” Am J. Phys.48, 931–932 (1980); G.S. Agarwal and S. P. Tewari, “An all-optical realization of quantum zeno effect,” Phys. Lett. A 185, 139–142 (1994); M. Kitano, “Quantum Zeno Effect and intracavity polarization filters,” Opt. Commun. 141, 39–42 (1997); V. Kidambi, A. Widom, C. Lerner, and Y. N. Srivastava, “Photon polarization measurements without the Quantum Zeno Effect,” Am. J. Phys. 68, 475–481 (2000); K. Yamane, M. Ito, and M. Kitano, “Quantum Zeno Effect in Optical Fibers,” Opt. Commun. 192, 299–307 (2001).
[Crossref]

Pertsch, T.

Pritchard, D. E.

E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and Pulsed Quantum Zeno Effect,” Phys. Rev. Lett. 97, 260402-1-260402-4 (2006).
[Crossref]

Pronko, G.

I. Antoniou, E. Karpov, G. Pronko, and E. Yarevsky, “Quantum Zeno and anti-Zeno effects in the Friedrichs model,” Phys. Rev. A 63, 062110-1-062110-10 (2001).
[Crossref]

Raizen, M.G.

M.C. Fischer, B. Gutierrez-Medina, and M.G. Raizen, “Observation of the Quantum Zeno and Anti-Zeno Effects in an unstable system,” Phys. Rev. Lett.87, 040402-1-040402-4 (2001).
[Crossref] [PubMed]

Rza¸zewski, K.

M. Lewenstein and K. Rza̧zewski, “Quantum Anti-Zeno Effect,” Phys. Rev. A 61, 022105-1-022105-5 (2000).
[Crossref]

Shimizu, A.

K. Koshino and A. Shimizu, “Quantum Zeno Effect for exponentially decaying systems,” Phys. Rev. Lett. 92, 030401-1-030401-4 (2004).

Silberberg, Y.

D.N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[Crossref] [PubMed]

Sorbello, G.

G. Della Valle, S. Taccheo, P. Laporta, G. Sorbello, E. Cianci, and V. Foglietti, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42, 632–633 (2006).
[Crossref]

Streed, E. W.

E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and Pulsed Quantum Zeno Effect,” Phys. Rev. Lett. 97, 260402-1-260402-4 (2006).
[Crossref]

Sudarshan, E. C. G.

B. Misra and E. C. G. Sudarshan, “The Zeno’s Paradox in Quantum Theory,” J. Math. Phys. 18, 756–763 (1977).
[Crossref]

Szameit, A.

Taccheo, S.

G. Della Valle, S. Taccheo, P. Laporta, G. Sorbello, E. Cianci, and V. Foglietti, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42, 632–633 (2006).
[Crossref]

Tünnermann, A.

Valle, G. Della

G. Della Valle, S. Longhi, P. Laporta, P. Biagioni, L. Duò, and M. Finazzi, “Discrete diffraction in waveguide arrays: A quantitative analysis by tunneling optical microscopy,” Appl. Phys. Lett. 90, 261118-1-261118-3 (2007).
[Crossref]

G. Della Valle, S. Taccheo, P. Laporta, G. Sorbello, E. Cianci, and V. Foglietti, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42, 632–633 (2006).
[Crossref]

Wineland, D. J.

W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno Effect,” Phys. Rev. A 41, 2295–2300 (1990).
[Crossref] [PubMed]

Yarevsky, E.

I. Antoniou, E. Karpov, G. Pronko, and E. Yarevsky, “Quantum Zeno and anti-Zeno effects in the Friedrichs model,” Phys. Rev. A 63, 062110-1-062110-10 (2001).
[Crossref]

Appl. Phys. Lett. (1)

G. Della Valle, S. Longhi, P. Laporta, P. Biagioni, L. Duò, and M. Finazzi, “Discrete diffraction in waveguide arrays: A quantitative analysis by tunneling optical microscopy,” Appl. Phys. Lett. 90, 261118-1-261118-3 (2007).
[Crossref]

Electron. Lett. (1)

G. Della Valle, S. Taccheo, P. Laporta, G. Sorbello, E. Cianci, and V. Foglietti, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42, 632–633 (2006).
[Crossref]

Int. J. Mod. Phys. B (1)

H. Nakazato, M. Namiki, and S. Pascazio, “Temporal behavior of Quantum Mechanical Systems,” Int. J. Mod. Phys. B 10, 247–295 (1996).
[Crossref]

J. Math. Phys. (1)

B. Misra and E. C. G. Sudarshan, “The Zeno’s Paradox in Quantum Theory,” J. Math. Phys. 18, 756–763 (1977).
[Crossref]

Nature (3)

A.G. Kofman and G. Kurizki, “Acceleration of Quantum Decay processes by frequent observations,” Nature (London)  405, 546–550 (2000).
[Crossref] [PubMed]

P. Knight, “Watching a Laser Hot-Pot,” Nature (London)  344, 493–494 (1990).
[Crossref]

D.N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. A (4)

I. Antoniou, E. Karpov, G. Pronko, and E. Yarevsky, “Quantum Zeno and anti-Zeno effects in the Friedrichs model,” Phys. Rev. A 63, 062110-1-062110-10 (2001).
[Crossref]

W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno Effect,” Phys. Rev. A 41, 2295–2300 (1990).
[Crossref] [PubMed]

A.G. Kofman and G. Kurizki, “Quantum Zeno effect on atomic excitation decay in resonators,” Phys. Rev. A 54, R3750–R3753 (1996).
[Crossref] [PubMed]

M. Lewenstein and K. Rza̧zewski, “Quantum Anti-Zeno Effect,” Phys. Rev. A 61, 022105-1-022105-5 (2000).
[Crossref]

Phys. Rev. Lett. (3)

P. Facchi, H. Nakazato, and S. Pascazio, “From the Quantum Zeno to the Inverse Quantum Zeno Effect,” Phys. Rev. Lett. 86, 2699–2703 (2001).
[Crossref] [PubMed]

E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and Pulsed Quantum Zeno Effect,” Phys. Rev. Lett. 97, 260402-1-260402-4 (2006).
[Crossref]

P. Facchi and S. Pascazio, “Quantum Zeno Subspaces,” Phys. Rev. Lett. 89, 080401-1-080401-4 (2002).
[Crossref] [PubMed]

Quantum Zeno Effect for exponentially decaying systems (1)

K. Koshino and A. Shimizu, “Quantum Zeno Effect for exponentially decaying systems,” Phys. Rev. Lett. 92, 030401-1-030401-4 (2004).

Semicond. Sci. Technol. (1)

S.I. Bozhevolnyi and L. Kuipers, “Near-field characterization of photonic crystal waveguides,” Semicond. Sci. Technol. 21, R1–R16 (2006).
[Crossref]

Other (9)

BeamPROP, 5.0 ed., Rsoft Design Group, Inc., 2002.

AlphaSNOM, WITec GmbH, Ulm, Germany.

A. Peres, “Zeno Paradox in Quantum Theory,” Am J. Phys.48, 931–932 (1980); G.S. Agarwal and S. P. Tewari, “An all-optical realization of quantum zeno effect,” Phys. Lett. A 185, 139–142 (1994); M. Kitano, “Quantum Zeno Effect and intracavity polarization filters,” Opt. Commun. 141, 39–42 (1997); V. Kidambi, A. Widom, C. Lerner, and Y. N. Srivastava, “Photon polarization measurements without the Quantum Zeno Effect,” Am. J. Phys. 68, 475–481 (2000); K. Yamane, M. Ito, and M. Kitano, “Quantum Zeno Effect in Optical Fibers,” Opt. Commun. 192, 299–307 (2001).
[Crossref]

M.C. Fischer, B. Gutierrez-Medina, and M.G. Raizen, “Observation of the Quantum Zeno and Anti-Zeno Effects in an unstable system,” Phys. Rev. Lett.87, 040402-1-040402-4 (2001).
[Crossref] [PubMed]

See, for instance: D. Dragoman and M. Dragoman, Quantum-Classical Analogies (Springer, Berlin, 2004) and references therein.

S. Longhi, “Nonexponential decay via tunneling in tight-binding lattices and the optical zeno effect,” Phys. Rev. Lett.97, 110402-1-110402-4 (2006).
[Crossref] [PubMed]

S. Longhi, “Control of Photon Tunneling in Optical Waveguides,” Opt. Lett.32, 557–559 (2007); “Decay of a nonlinear impurity in a structured continuum from a nonlinear Fano-Anderson model,” Phys. Rev. B 75, 184306-1-184306-12 (2007); “Non-Markovian decay and lasing condition in an optical microcavity coupled to a structured reservoir,” Phys. Rev. A 74, 063826-1-063826-14 (2006).
[Crossref] [PubMed]

P. Facchi and S. Pascazio, Progress in Optics, E. Wolf, ed., (Elsevier, Amsterdam, 2001), Vol. 42, p. 147.

A.G. Kofman and G. Kurizki, “Universal Dynamical Control of Quantum Mechanical Decay: Modulation of the Coupling to the Continuum,” Phys. Rev. Lett.87, 270405-1-270405-4 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Sketch of the sample with the central waveguide W coupled to the semi-array S. Δ0 is the coupling rate between Wand S, Δ the coupling rate between adjacent waveguides in S, a 0 and a are waveguide distances. (b) Sketch of the sample with the central waveguide W and the alternating semi-arrays S1, S2, etc. for the demonstration of the optical Zeno effect. τ is the distance between successive interruptions of the semi-arrays. (c) Topography map, obtained by means of atomic force microscopy, of the sample shown in panel (b). (d) Sketch of the energy levels for the quantum analogue describing a discrete level |χ〉 coupled to a tight-binding continuum |ω〉 of width 4ħΔ.

Fig. 2.
Fig. 2.

Decay behavior of the fractional power trapped in the waveguide W for the sample in Fig. 1(a), as given by Eq. (4) (solid line) and by a full beam propagation analysis (dashed line). In the inset, the effective decay rate γeff (z)=-(1/z)lnP(z) (solid line) is compared to the ‘natural’ decay rate γ 0 (dotted line).

Fig. 3.
Fig. 3.

Experimental spatial maps, acquired by STOM imaging, for the normalized light intensity distribution in the waveguides of the samples described in Figs. 1(a) (panel a) and 1(b) (panel b). Panel c shows the experimental decay curves for the fractional power trapped in the waveguide Wfor the sample of panel a (squares) and panel b (circles). Solid lines represent the numerical prediction based on Eq. (4). In the inset, normalized power decay laws are plotted for each semi-array for the sample in panel b.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H 0 = h ¯ σ χ χ + 2 Δ 2 Δ d ω h ¯ ω ω ω
H I = h ¯ d ω [ g ( ω ) ω χ + h . c . ]
g ( ω ) = Δ 0 π Δ [ 1 ( ω 2 Δ ) 2 ] 1 4
c χ ( z ) = 1 2 π 0 + i 0 + + i ds exp ( sz ) is σ ( s ) ,
( s ) = d ω g ( ω ) 2 is ω = i Δ 0 2 2 Δ 2 [ s s 2 + 4 Δ 2 ]

Metrics