Abstract

Near-field optical micromanipulation permits new possibilities for controlled motion of trapped objects. In this work, we report an original geometry for optically deflecting and sorting micro-objects employing a total internal reflection microscope system. A small beam of laser light is delivered off-axis through a total internal reflection objective which creates an elongated evanescent illumination of light at a glass/water interface. Asymmetrical gradient and scattering forces from this light field are seen to deflect and sort polystyrene microparticles within a fluid flow. The speed of the deflected objects is dependent upon their intrinsic properties. We present a finite element method to calculate the optical forces for the evanescent waves. The numerical simulations are in good qualitative agreement with the experimental observations and elucidate features of the particle trajectory. In the size range of 1 µm to 5 µm in diameter, polystyrene spheres were found to be guided on average 2.9 ± 0.7 faster than silica spheres. The velocity increased by 3.00.5 µms−1 per µm increase in diameter for polystyrene spheres and 0.7 ± 0.2 µms−1 per µm for silica. We employ this size dependence for performing passive optical sorting within a microfluidic chip and is demonstrated in the accompanying video.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. S. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236-4238 (2004).
    [CrossRef]
  2. V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticies on a surface," Appl. Phys. Lett. 86, 031106 (2005).
    [CrossRef]
  3. V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417 (2006).
    [CrossRef]
  4. P. J. Reece, V. Garcés-Chávez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 221116 (2006).
    [CrossRef]
  5. S. Kawata and T. Tani, "Optically driven mie particles in an evanescent field along a channeled waveguide," Opt. Lett. 21, 1768-1770 (1996).
    [CrossRef] [PubMed]
  6. K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, R. McDonald, I. Andreev, P. Mthunzi, C. T. A. Brown, R. F. Marchington, and A. C. Riches, "Optical separation of cells on potential energy landscapes: Enhancement with dielectric tagging," IEEE J. Sel. Top. Quantum Electron. 13, 1646-1654 (2007).
    [CrossRef]
  7. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
    [CrossRef] [PubMed]
  8. K. Ladavac, K. Kasza, and D. G. Grier, "Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation," Phys. Rev. E 70, 010901 (2004).
    [CrossRef]
  9. G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, "Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes," Opt. Lett. 32, 1144-1146 (2007).
    [CrossRef] [PubMed]
  10. L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, "Light-induced cell separation in a tailored optical landscape," Appl. Phys. Lett. 87, 123901 (2005).
    [CrossRef]
  11. I. Ricardez-Vargas, P. Rodriguez-Montero, R. Ramos-Garcia, and K. Volke-Sepulveda, "Modulated optical sieve for sorting of polydisperse microparticles," Appl. Phys. Lett. 88, 121116 (2006).
    [CrossRef]
  12. T. ?ižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of submicrometer objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006).
    [CrossRef]
  13. K. Grujic, O. G. Helleso, J. P. Hole, and J. S. Wilkinson, "Sorting of polystyrene microspheres using a y-branched optical waveguide," Opt. Express 13, 1-7 (2005).
    [CrossRef] [PubMed]
  14. B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, "Optofluidic trapping and transport on solid core waveguides within a microfluidic device," Opt. Express 15, 14322-14334 (2007).
    [CrossRef] [PubMed]
  15. D. Ganic, X. S. Gan, and M. Gu, "Trapping force and optical lifting under focused evanescent wave illumination," Opt. Express 12, 5533-5538 (2004).
    [CrossRef] [PubMed]
  16. R. J. Oetama and J. Y. Walz, "Translation of colloidal particles next to a flat plate using evanescent waves," Colloids Surf. A 211, 179-195 (2002).
    [CrossRef]
  17. J. P. Barton and D. R. Alexander, "Fifth-order corrected electromagnetic field components for a fundamental gaussian beam," J. Appl. Phys. 66, 2800-2802 (1989).
    [CrossRef]
  18. I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Phys. Rep. 52, 133-201 (1979).
    [CrossRef]
  19. J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
    [CrossRef]
  20. E. Almaas and I. Brevik, "Radiation forces on a micrometer-sized sphere in an evanescent field," J. Opt. Soc. Am. B 12, 2429-2438 (1995).
    [CrossRef]
  21. A. J. Goldman, R. G. Cox, and H. Brenner, "Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid," Chem. Eng. Sci. 22, 637-651 (1967).
    [CrossRef]
  22. A. H. J. Yang and D. Erickson, "Stability analysis of optofluidic transport on solid-core waveguiding structures," Nanotechnology 4, 045704 (2008).
    [CrossRef]
  23. G. P. Krishnan and D. T. Leighton, "Inertial lift on a moving sphere in contact with a plane wall in a shear-flow," Phys. Fluids 7, 2538-2545 (1995).
    [CrossRef]
  24. I. Brevik, T. A. Sivertsen, and E. Almaas, "Radiation forces on an absorbing micrometer-sized sphere in an evanescent field," J. Opt. Soc. Am. B 20, 1739-1749 (2003).
    [CrossRef]
  25. F. Charru, E. Larrieu, J. B. Dupont, and R. Zenit, "Motion of a particle near a rough wall in a viscous shear flow," J. Fluid Mech. 570, 431-453 (2007).
    [CrossRef]
  26. J. C. McDonald and G. M. Whitesides, "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices," Acc. Chem. Res. 35, 491-499 (2002).
    [CrossRef] [PubMed]
  27. S. B. Kim, J. H. Kim, and S. S. Kim, "Theoretical development of in situ optical particle separator: Cross-type optical chromatography," Appl. Opt. 45, 6919-6924 (2006).
    [CrossRef] [PubMed]
  28. G. Milne, "Labview pattern-matching particle tracker software," (2007), http://faculty.washington.edu/gmilne/tracker.htm.
  29. M. Šiler, T. ?ižmár, M. Šerý, and P. Zemánek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
    [CrossRef]
  30. S. J. Hart and A. V. Terray, "Refractive-index-driven separation of colloidal polymer particles using optical chromatography," Appl. Phys. Lett. 83, 5316-5318 (2003).
    [CrossRef]

2008 (1)

A. H. J. Yang and D. Erickson, "Stability analysis of optofluidic transport on solid-core waveguiding structures," Nanotechnology 4, 045704 (2008).
[CrossRef]

2007 (4)

K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, R. McDonald, I. Andreev, P. Mthunzi, C. T. A. Brown, R. F. Marchington, and A. C. Riches, "Optical separation of cells on potential energy landscapes: Enhancement with dielectric tagging," IEEE J. Sel. Top. Quantum Electron. 13, 1646-1654 (2007).
[CrossRef]

F. Charru, E. Larrieu, J. B. Dupont, and R. Zenit, "Motion of a particle near a rough wall in a viscous shear flow," J. Fluid Mech. 570, 431-453 (2007).
[CrossRef]

G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, "Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes," Opt. Lett. 32, 1144-1146 (2007).
[CrossRef] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, "Optofluidic trapping and transport on solid core waveguides within a microfluidic device," Opt. Express 15, 14322-14334 (2007).
[CrossRef] [PubMed]

2006 (6)

S. B. Kim, J. H. Kim, and S. S. Kim, "Theoretical development of in situ optical particle separator: Cross-type optical chromatography," Appl. Opt. 45, 6919-6924 (2006).
[CrossRef] [PubMed]

M. Šiler, T. ?ižmár, M. Šerý, and P. Zemánek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
[CrossRef]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417 (2006).
[CrossRef]

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 221116 (2006).
[CrossRef]

I. Ricardez-Vargas, P. Rodriguez-Montero, R. Ramos-Garcia, and K. Volke-Sepulveda, "Modulated optical sieve for sorting of polydisperse microparticles," Appl. Phys. Lett. 88, 121116 (2006).
[CrossRef]

T. ?ižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of submicrometer objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006).
[CrossRef]

2005 (3)

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticies on a surface," Appl. Phys. Lett. 86, 031106 (2005).
[CrossRef]

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, "Light-induced cell separation in a tailored optical landscape," Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

K. Grujic, O. G. Helleso, J. P. Hole, and J. S. Wilkinson, "Sorting of polystyrene microspheres using a y-branched optical waveguide," Opt. Express 13, 1-7 (2005).
[CrossRef] [PubMed]

2004 (3)

D. Ganic, X. S. Gan, and M. Gu, "Trapping force and optical lifting under focused evanescent wave illumination," Opt. Express 12, 5533-5538 (2004).
[CrossRef] [PubMed]

K. Ladavac, K. Kasza, and D. G. Grier, "Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation," Phys. Rev. E 70, 010901 (2004).
[CrossRef]

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. S. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236-4238 (2004).
[CrossRef]

2003 (3)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

I. Brevik, T. A. Sivertsen, and E. Almaas, "Radiation forces on an absorbing micrometer-sized sphere in an evanescent field," J. Opt. Soc. Am. B 20, 1739-1749 (2003).
[CrossRef]

S. J. Hart and A. V. Terray, "Refractive-index-driven separation of colloidal polymer particles using optical chromatography," Appl. Phys. Lett. 83, 5316-5318 (2003).
[CrossRef]

2002 (2)

J. C. McDonald and G. M. Whitesides, "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices," Acc. Chem. Res. 35, 491-499 (2002).
[CrossRef] [PubMed]

R. J. Oetama and J. Y. Walz, "Translation of colloidal particles next to a flat plate using evanescent waves," Colloids Surf. A 211, 179-195 (2002).
[CrossRef]

1996 (1)

1995 (2)

E. Almaas and I. Brevik, "Radiation forces on a micrometer-sized sphere in an evanescent field," J. Opt. Soc. Am. B 12, 2429-2438 (1995).
[CrossRef]

G. P. Krishnan and D. T. Leighton, "Inertial lift on a moving sphere in contact with a plane wall in a shear-flow," Phys. Fluids 7, 2538-2545 (1995).
[CrossRef]

1989 (2)

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

J. P. Barton and D. R. Alexander, "Fifth-order corrected electromagnetic field components for a fundamental gaussian beam," J. Appl. Phys. 66, 2800-2802 (1989).
[CrossRef]

1979 (1)

I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Phys. Rep. 52, 133-201 (1979).
[CrossRef]

1967 (1)

A. J. Goldman, R. G. Cox, and H. Brenner, "Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid," Chem. Eng. Sci. 22, 637-651 (1967).
[CrossRef]

Alexander, D. R.

J. P. Barton and D. R. Alexander, "Fifth-order corrected electromagnetic field components for a fundamental gaussian beam," J. Appl. Phys. 66, 2800-2802 (1989).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

Almaas, E.

Andreev, I.

K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, R. McDonald, I. Andreev, P. Mthunzi, C. T. A. Brown, R. F. Marchington, and A. C. Riches, "Optical separation of cells on potential energy landscapes: Enhancement with dielectric tagging," IEEE J. Sel. Top. Quantum Electron. 13, 1646-1654 (2007).
[CrossRef]

Badenes, G.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417 (2006).
[CrossRef]

Barton, J. P.

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

J. P. Barton and D. R. Alexander, "Fifth-order corrected electromagnetic field components for a fundamental gaussian beam," J. Appl. Phys. 66, 2800-2802 (1989).
[CrossRef]

Brenner, H.

A. J. Goldman, R. G. Cox, and H. Brenner, "Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid," Chem. Eng. Sci. 22, 637-651 (1967).
[CrossRef]

Brevik, I.

Brown, C. T. A.

K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, R. McDonald, I. Andreev, P. Mthunzi, C. T. A. Brown, R. F. Marchington, and A. C. Riches, "Optical separation of cells on potential energy landscapes: Enhancement with dielectric tagging," IEEE J. Sel. Top. Quantum Electron. 13, 1646-1654 (2007).
[CrossRef]

Bryant, P. E.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, "Light-induced cell separation in a tailored optical landscape," Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Charru, F.

F. Charru, E. Larrieu, J. B. Dupont, and R. Zenit, "Motion of a particle near a rough wall in a viscous shear flow," J. Fluid Mech. 570, 431-453 (2007).
[CrossRef]

Chon, J. W. M.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. S. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236-4238 (2004).
[CrossRef]

Cižmár, T.

T. ?ižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of submicrometer objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006).
[CrossRef]

M. Šiler, T. ?ižmár, M. Šerý, and P. Zemánek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
[CrossRef]

Cox, R. G.

A. J. Goldman, R. G. Cox, and H. Brenner, "Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid," Chem. Eng. Sci. 22, 637-651 (1967).
[CrossRef]

Dholakia, K.

K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, R. McDonald, I. Andreev, P. Mthunzi, C. T. A. Brown, R. F. Marchington, and A. C. Riches, "Optical separation of cells on potential energy landscapes: Enhancement with dielectric tagging," IEEE J. Sel. Top. Quantum Electron. 13, 1646-1654 (2007).
[CrossRef]

G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, "Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes," Opt. Lett. 32, 1144-1146 (2007).
[CrossRef] [PubMed]

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 221116 (2006).
[CrossRef]

T. ?ižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of submicrometer objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006).
[CrossRef]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417 (2006).
[CrossRef]

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, "Light-induced cell separation in a tailored optical landscape," Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticies on a surface," Appl. Phys. Lett. 86, 031106 (2005).
[CrossRef]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

Dupont, J. B.

F. Charru, E. Larrieu, J. B. Dupont, and R. Zenit, "Motion of a particle near a rough wall in a viscous shear flow," J. Fluid Mech. 570, 431-453 (2007).
[CrossRef]

Erickson, D.

A. H. J. Yang and D. Erickson, "Stability analysis of optofluidic transport on solid-core waveguiding structures," Nanotechnology 4, 045704 (2008).
[CrossRef]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, "Optofluidic trapping and transport on solid core waveguides within a microfluidic device," Opt. Express 15, 14322-14334 (2007).
[CrossRef] [PubMed]

Gan, X. S.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. S. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236-4238 (2004).
[CrossRef]

D. Ganic, X. S. Gan, and M. Gu, "Trapping force and optical lifting under focused evanescent wave illumination," Opt. Express 12, 5533-5538 (2004).
[CrossRef] [PubMed]

Ganic, D.

Garcés-Chávez, V.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417 (2006).
[CrossRef]

T. ?ižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of submicrometer objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006).
[CrossRef]

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 221116 (2006).
[CrossRef]

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, "Light-induced cell separation in a tailored optical landscape," Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticies on a surface," Appl. Phys. Lett. 86, 031106 (2005).
[CrossRef]

Goldman, A. J.

A. J. Goldman, R. G. Cox, and H. Brenner, "Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid," Chem. Eng. Sci. 22, 637-651 (1967).
[CrossRef]

Grier, D. G.

K. Ladavac, K. Kasza, and D. G. Grier, "Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation," Phys. Rev. E 70, 010901 (2004).
[CrossRef]

Grujic, K.

Gu, M.

D. Ganic, X. S. Gan, and M. Gu, "Trapping force and optical lifting under focused evanescent wave illumination," Opt. Express 12, 5533-5538 (2004).
[CrossRef] [PubMed]

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. S. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236-4238 (2004).
[CrossRef]

Gunn-Moore, F. J.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, "Light-induced cell separation in a tailored optical landscape," Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Hart, S. J.

S. J. Hart and A. V. Terray, "Refractive-index-driven separation of colloidal polymer particles using optical chromatography," Appl. Phys. Lett. 83, 5316-5318 (2003).
[CrossRef]

Haumonte, J. B.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. S. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236-4238 (2004).
[CrossRef]

Helleso, O. G.

Hole, J. P.

Kasza, K.

K. Ladavac, K. Kasza, and D. G. Grier, "Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation," Phys. Rev. E 70, 010901 (2004).
[CrossRef]

Kawata, S.

Kim, J. H.

Kim, S. B.

Kim, S. S.

Krishnan, G. P.

G. P. Krishnan and D. T. Leighton, "Inertial lift on a moving sphere in contact with a plane wall in a shear-flow," Phys. Fluids 7, 2538-2545 (1995).
[CrossRef]

Ladavac, K.

K. Ladavac, K. Kasza, and D. G. Grier, "Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation," Phys. Rev. E 70, 010901 (2004).
[CrossRef]

Larrieu, E.

F. Charru, E. Larrieu, J. B. Dupont, and R. Zenit, "Motion of a particle near a rough wall in a viscous shear flow," J. Fluid Mech. 570, 431-453 (2007).
[CrossRef]

Lee, W. M.

K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, R. McDonald, I. Andreev, P. Mthunzi, C. T. A. Brown, R. F. Marchington, and A. C. Riches, "Optical separation of cells on potential energy landscapes: Enhancement with dielectric tagging," IEEE J. Sel. Top. Quantum Electron. 13, 1646-1654 (2007).
[CrossRef]

Leighton, D. T.

G. P. Krishnan and D. T. Leighton, "Inertial lift on a moving sphere in contact with a plane wall in a shear-flow," Phys. Fluids 7, 2538-2545 (1995).
[CrossRef]

Lipson, M.

MacDonald, M.

MacDonald, M. P.

K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, R. McDonald, I. Andreev, P. Mthunzi, C. T. A. Brown, R. F. Marchington, and A. C. Riches, "Optical separation of cells on potential energy landscapes: Enhancement with dielectric tagging," IEEE J. Sel. Top. Quantum Electron. 13, 1646-1654 (2007).
[CrossRef]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

Marchington, R. F.

K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, R. McDonald, I. Andreev, P. Mthunzi, C. T. A. Brown, R. F. Marchington, and A. C. Riches, "Optical separation of cells on potential energy landscapes: Enhancement with dielectric tagging," IEEE J. Sel. Top. Quantum Electron. 13, 1646-1654 (2007).
[CrossRef]

McDonald, J. C.

J. C. McDonald and G. M. Whitesides, "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices," Acc. Chem. Res. 35, 491-499 (2002).
[CrossRef] [PubMed]

McDonald, R.

K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, R. McDonald, I. Andreev, P. Mthunzi, C. T. A. Brown, R. F. Marchington, and A. C. Riches, "Optical separation of cells on potential energy landscapes: Enhancement with dielectric tagging," IEEE J. Sel. Top. Quantum Electron. 13, 1646-1654 (2007).
[CrossRef]

Micheau, Y.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. S. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236-4238 (2004).
[CrossRef]

Milne, G.

G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, "Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes," Opt. Lett. 32, 1144-1146 (2007).
[CrossRef] [PubMed]

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, "Light-induced cell separation in a tailored optical landscape," Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Mthunzi, P.

K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, R. McDonald, I. Andreev, P. Mthunzi, C. T. A. Brown, R. F. Marchington, and A. C. Riches, "Optical separation of cells on potential energy landscapes: Enhancement with dielectric tagging," IEEE J. Sel. Top. Quantum Electron. 13, 1646-1654 (2007).
[CrossRef]

Oetama, R. J.

R. J. Oetama and J. Y. Walz, "Translation of colloidal particles next to a flat plate using evanescent waves," Colloids Surf. A 211, 179-195 (2002).
[CrossRef]

Papagiakoumou, E.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, "Light-induced cell separation in a tailored optical landscape," Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Paterson, L.

K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, R. McDonald, I. Andreev, P. Mthunzi, C. T. A. Brown, R. F. Marchington, and A. C. Riches, "Optical separation of cells on potential energy landscapes: Enhancement with dielectric tagging," IEEE J. Sel. Top. Quantum Electron. 13, 1646-1654 (2007).
[CrossRef]

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, "Light-induced cell separation in a tailored optical landscape," Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Quidant, R.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417 (2006).
[CrossRef]

Ramos-Garcia, R.

I. Ricardez-Vargas, P. Rodriguez-Montero, R. Ramos-Garcia, and K. Volke-Sepulveda, "Modulated optical sieve for sorting of polydisperse microparticles," Appl. Phys. Lett. 88, 121116 (2006).
[CrossRef]

Reece, P. J.

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 221116 (2006).
[CrossRef]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417 (2006).
[CrossRef]

Rhodes, D.

Ricardez-Vargas, I.

I. Ricardez-Vargas, P. Rodriguez-Montero, R. Ramos-Garcia, and K. Volke-Sepulveda, "Modulated optical sieve for sorting of polydisperse microparticles," Appl. Phys. Lett. 88, 121116 (2006).
[CrossRef]

Riches, A. C.

K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, R. McDonald, I. Andreev, P. Mthunzi, C. T. A. Brown, R. F. Marchington, and A. C. Riches, "Optical separation of cells on potential energy landscapes: Enhancement with dielectric tagging," IEEE J. Sel. Top. Quantum Electron. 13, 1646-1654 (2007).
[CrossRef]

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, "Light-induced cell separation in a tailored optical landscape," Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Rodriguez-Montero, P.

I. Ricardez-Vargas, P. Rodriguez-Montero, R. Ramos-Garcia, and K. Volke-Sepulveda, "Modulated optical sieve for sorting of polydisperse microparticles," Appl. Phys. Lett. 88, 121116 (2006).
[CrossRef]

Schaub, S. A.

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

Schmidt, B. S.

Šerý, M.

M. Šiler, T. ?ižmár, M. Šerý, and P. Zemánek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
[CrossRef]

T. ?ižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of submicrometer objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006).
[CrossRef]

Sibbett, W.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, "Light-induced cell separation in a tailored optical landscape," Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Šiler, M.

T. ?ižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of submicrometer objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006).
[CrossRef]

M. Šiler, T. ?ižmár, M. Šerý, and P. Zemánek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
[CrossRef]

Sivertsen, T. A.

Spalding, G. C.

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticies on a surface," Appl. Phys. Lett. 86, 031106 (2005).
[CrossRef]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

Tani, T.

Tatarkova, S. A.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, "Light-induced cell separation in a tailored optical landscape," Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Terray, A. V.

S. J. Hart and A. V. Terray, "Refractive-index-driven separation of colloidal polymer particles using optical chromatography," Appl. Phys. Lett. 83, 5316-5318 (2003).
[CrossRef]

Torner, L.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417 (2006).
[CrossRef]

Volke-Sepulveda, K.

I. Ricardez-Vargas, P. Rodriguez-Montero, R. Ramos-Garcia, and K. Volke-Sepulveda, "Modulated optical sieve for sorting of polydisperse microparticles," Appl. Phys. Lett. 88, 121116 (2006).
[CrossRef]

Walz, J. Y.

R. J. Oetama and J. Y. Walz, "Translation of colloidal particles next to a flat plate using evanescent waves," Colloids Surf. A 211, 179-195 (2002).
[CrossRef]

Whitesides, G. M.

J. C. McDonald and G. M. Whitesides, "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices," Acc. Chem. Res. 35, 491-499 (2002).
[CrossRef] [PubMed]

Wilkinson, J. S.

Yang, A. H. J.

A. H. J. Yang and D. Erickson, "Stability analysis of optofluidic transport on solid-core waveguiding structures," Nanotechnology 4, 045704 (2008).
[CrossRef]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, "Optofluidic trapping and transport on solid core waveguides within a microfluidic device," Opt. Express 15, 14322-14334 (2007).
[CrossRef] [PubMed]

Zemánek, P.

M. Šiler, T. ?ižmár, M. Šerý, and P. Zemánek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
[CrossRef]

T. ?ižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of submicrometer objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006).
[CrossRef]

Zenit, R.

F. Charru, E. Larrieu, J. B. Dupont, and R. Zenit, "Motion of a particle near a rough wall in a viscous shear flow," J. Fluid Mech. 570, 431-453 (2007).
[CrossRef]

Acc. Chem. Res. (1)

J. C. McDonald and G. M. Whitesides, "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices," Acc. Chem. Res. 35, 491-499 (2002).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Šiler, T. ?ižmár, M. Šerý, and P. Zemánek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
[CrossRef]

Appl. Phys. Lett. (6)

S. J. Hart and A. V. Terray, "Refractive-index-driven separation of colloidal polymer particles using optical chromatography," Appl. Phys. Lett. 83, 5316-5318 (2003).
[CrossRef]

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 221116 (2006).
[CrossRef]

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. S. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236-4238 (2004).
[CrossRef]

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticies on a surface," Appl. Phys. Lett. 86, 031106 (2005).
[CrossRef]

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, "Light-induced cell separation in a tailored optical landscape," Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

I. Ricardez-Vargas, P. Rodriguez-Montero, R. Ramos-Garcia, and K. Volke-Sepulveda, "Modulated optical sieve for sorting of polydisperse microparticles," Appl. Phys. Lett. 88, 121116 (2006).
[CrossRef]

Chem. Eng. Sci. (1)

A. J. Goldman, R. G. Cox, and H. Brenner, "Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid," Chem. Eng. Sci. 22, 637-651 (1967).
[CrossRef]

Colloids Surf. A (1)

R. J. Oetama and J. Y. Walz, "Translation of colloidal particles next to a flat plate using evanescent waves," Colloids Surf. A 211, 179-195 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, R. McDonald, I. Andreev, P. Mthunzi, C. T. A. Brown, R. F. Marchington, and A. C. Riches, "Optical separation of cells on potential energy landscapes: Enhancement with dielectric tagging," IEEE J. Sel. Top. Quantum Electron. 13, 1646-1654 (2007).
[CrossRef]

J. Appl. Phys. (2)

J. P. Barton and D. R. Alexander, "Fifth-order corrected electromagnetic field components for a fundamental gaussian beam," J. Appl. Phys. 66, 2800-2802 (1989).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

J. Fluid Mech. (1)

F. Charru, E. Larrieu, J. B. Dupont, and R. Zenit, "Motion of a particle near a rough wall in a viscous shear flow," J. Fluid Mech. 570, 431-453 (2007).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nanotechnology (1)

A. H. J. Yang and D. Erickson, "Stability analysis of optofluidic transport on solid-core waveguiding structures," Nanotechnology 4, 045704 (2008).
[CrossRef]

Nature (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Fluids (1)

G. P. Krishnan and D. T. Leighton, "Inertial lift on a moving sphere in contact with a plane wall in a shear-flow," Phys. Fluids 7, 2538-2545 (1995).
[CrossRef]

Phys. Rep. (1)

I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Phys. Rep. 52, 133-201 (1979).
[CrossRef]

Phys. Rev. B (2)

T. ?ižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of submicrometer objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006).
[CrossRef]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417 (2006).
[CrossRef]

Phys. Rev. E (1)

K. Ladavac, K. Kasza, and D. G. Grier, "Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation," Phys. Rev. E 70, 010901 (2004).
[CrossRef]

Other (1)

G. Milne, "Labview pattern-matching particle tracker software," (2007), http://faculty.washington.edu/gmilne/tracker.htm.

Supplementary Material (2)

» Media 1: MOV (1493 KB)     
» Media 2: MOV (3372 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Penetration depth of the evanescent wave as a function of the incidence angle at the interface. The inset shows the overlap between the evanescent field and the particle at the interface between the substrate and the water (angle of incidence, θ = 62° and a 5 µm sphere). The interaction between sphere and field is not considered in this illustration.

Fig. 2.
Fig. 2.

Comparison between the experimentally observed beam profile and the beam waist (in red) of a Gaussian beam incident at 61°. The units on the x- and y-axis are µm and in normal incidence the Gaussian beam has a diameter of 13.4 µm.

Fig. 3.
Fig. 3.

(a). Horizontal (positive range) and vertical (negative range) forces as a function of the particle position with respect to the incoming beam, for different angles of incidence. The grayed region corresponds to the intensity profile of the beam on the interface. Note that its maximum is shifted with respect to the center of the incident beam due to the Goos-Hänchen shift. (b) Ratio between the horizontal optical forces of the p and s polarizations as a function of the particle position for different angles of incidence.

Fig. 4.
Fig. 4.

(a). Horizontal and vertical forces as a function of the angle of incidence for a 5 µm particles and an s polarized beam. b) Electric field distribution for 61° and 70° (see supplementary video)[Media 1]

Fig. 5.
Fig. 5.

Linear dependence of the horizontal forces for p polarized centered beam at x = 0 incident at θ = 61° as a function of the particle diameter.

Fig. 6.
Fig. 6.

(a). Near-field and far-field generation through a high-NA TIR objective lens by choice of beamlet position at the back aperture. Light rays within 0.4 mm of the back aperture extremity are incident with the coverslip-sample interface at an angle greater than the critical angle for total-internal reflection θC, producing evanescent waves (EW). (b) Passive optical sorting of microparticles by size using an evanescent field focused into a microfluidic chip. The sample fluid is hydrodynamically focused to pass over an evanescent focal spot and the sizedependence of the optical deflection force causes larger particles to be guided into a separated flow channel.

Fig. 7.
Fig. 7.

Particle trajectories overlaid onto a snapshot of a one minute long video of 2 µm polystyrene microparticles in the presence of an evanescent field, generated by a TIR objective lens illuminated by an off-axis beamlet. The initial position of the microparticles is indicated by a green spot, the lines show their path over time and the red spot indicated the point at which the particle is lost by the tracking software. Particles are guided by the evanescent wave in the positive x direction.

Fig. 8.
Fig. 8.

Velocities of 5 µm polystyrene particles guided by an evanescent field generated using a TIR objective lens, illuminated with p and s polarized laser light at the edge of the back aperture. (a) Mean guiding velocity normalized per unit power, as a function of distance traveled along the evanescent field. The x-axis here corresponds to the x-axis in Fig. 2. Each data point is the mean velocity of 36 particles (6 particles at 6 different powers) divided by the back aperture optical power, with the associated standard error in the mean. (b) Linear dependence of peak guiding velocity on the optical power at the back aperture of the TIR microscope objective lens. Each data point represents the mean peak velocity of 6 particles and the associated standard error in the mean.

Fig. 9.
Fig. 9.

Size and refractive index discrimination of microparticles in an evanescent field generated using a TIR objective lens. (a) Dependence of guiding velocity on particle diameter for refractive indices 1.59 and 1.37, namely polystyrene and silica respectively, for a power of 1.05 W at the back aperture. (b) Separation of microparticles in a 20 µms−1 fluid flow using an optical power of 1.3 W at the back aperture. The guiding distance is that traveled by a particle entering the evanescent field at a pre-defined position, traveling some distance orthogonal to fluid flow due to the optical field, before leaving the field with the bulk fluid flow. Data points are the mean distance traveled for a minimum of 5 particles that enter the field within ±2 µm of a pre-determined position of maximum evanescent guiding velocity.

Fig. 10.
Fig. 10.

Passive sorting by particle size in a microfluidic chip using evanescent waves. (a) Chip design to hydrodynamically focus sample through evanescent field focal spot. Approximate focal spot position is indicated by the dashed white ellipse. (b) Supplementary real time video of the sorting of 5 µm polystyrene spheres from a polydisperse mixture of 1, 3 and 5 µm spheres.[Media 2]

Tables (1)

Tables Icon

Table 1. Hydrodynamic velocities calculated using different correction factors

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T = = D E * + B H * 1 2 ( D E * + B H * ) ,
T ij = ε r ε 0 E i E * j + μ r μ 0 H i H * j 1 2 ( ε r ε 0 E k E k * + μ r μ 0 H k H k * ) ,
F = 1 2 Re ( s T = n ds ) ,
F = ε 0 4 Re ( V E k * E k ε r dv )
F = 6 πμa v ( 1 9 16 a h + 1 8 ( a h ) 3 45 256 ( a h ) 4 1 16 ( a h ) 5 ) 1
F = 6 πμav ( 8 15 ln ( h a a ) 0.9588 )

Metrics