Abstract

We present the design, fabrication, and testing of a microelectromechanical systems (MEMS) light modulator based on pixels patterned with periodic nanohole arrays. Flexure-suspended silicon pixels are patterned with a two dimensional array of 150 nm diameter nanoholes using nanoimprint lithography. A top glass plate assembled above the pixel array is used to provide a counter electrode for electrostatic actuation. The nanohole pattern is designed so that normally-incident light is coupled into an in-plane grating resonance, resulting in an optical stop-band at a desired wavelength. When the pixel is switched into contact with the top plate, the pixel becomes highly reflective. A 3:1 contrast ratio at the resonant wavelength is demonstrated for gratings patterned on bulk Si substrates. The switching time is 0.08 ms and the switching voltage is less than 15V.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Sampsell, "Digital micromirror device and its application to projection displays," J. Vac. Sci. Technol. B 12, 3242-3246 (1994).
    [CrossRef]
  2. M. W. Miles, "MEMS-based interferometric modulator for display applications," Proc. SPIE 3876, 20-28 (1999).
    [CrossRef]
  3. S. D. Senturia, D. R. Day, M. A. Butler, and M. C. Smith, "Programmable diffraction gratings and their uses in displays, spectroscopy, and communications," J. Microlithogr. Microfabr. Microsyst. 4, 041401-041406 (2005).
    [CrossRef]
  4. I. W. Jung, J. S. Wang, and O. Solgaard, "Optical pattern generation using a, spatial light modulator for maskless lithography," IEEE J. Sel. Top. Quantum Electron. 13, 147-154 (2007).
    [CrossRef]
  5. D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
    [CrossRef]
  6. Y. Kanamori, M. Shimono, and K. Hane, "Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates," IEEE Photon. Technol. Lett. 18, 2126-2128 (2006).
    [CrossRef]
  7. W. Suh, O. Solgaard, and S. Fan, "Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs," J. Appl. Phys. 98, 033102 (2005).
    [CrossRef]
  8. Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett. 90, 031911 (2007).
    [CrossRef]
  9. S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, "Sub-10 nm imprint lithography and applications," J. Vac. Sci. Technol. B 15, 2897 (1997).
    [CrossRef]
  10. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Proc. Phys. Soc. London 18, 269-275 (1902).
    [CrossRef]
  11. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
    [CrossRef]
  12. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316-4318 (2004).
    [CrossRef]
  13. J. M. Huang, K. M. Liew, C. H. Wong, S. Rajendran, M. J. Tan, and A. Q. Liu, "Mechanical design and optimization of capacitive micromachined switch," Sens. Actuators A 93, 273-285 (2001).
    [CrossRef]
  14. C. Goldsmith, J. Ehmke, A. Malczewski, B. Pillans, S. Eshelman, Z. Yao, J. Brank, and M. Eberly, "Lifetime characterization of capacitive RF MEMS switches," IEEE MTT-S Int. Microwave Symp. Dig. 3, 227-230 (2001).
  15. W. M. Van Spengen, R. Puers, R. Mertens, and I. De Wolf, "A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches," J. Micromech. Microeng. 14, 514-521 (2004).
    [CrossRef]
  16. J. R. Reid, R. T. Webster, and L. A. Starman, "Noncontact measurement of charge induced voltage shift in capacitive MEM-switches," IEEE Microwave Wirel. Compon. Lett. 13, 367-369 (2003).
    [CrossRef]
  17. P. G. Steeneken, T. G. S. M. Rijks, J. T. M. Van Beek, M. J. E. Ulenaers, J. De Coster, and R. Puers, "Dynamics and squeeze film gas damping of a capacitive RF MEMS switch," J. Micromech. Microeng. 15, 176-184 (2005).
    [CrossRef]
  18. S. Chowdhury, M. Ahmadi, and W. C. Miller, "A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams," J. Micromech. Microeng. 15, 756-763 (2005).
    [CrossRef]
  19. J. B. Muldavin, "Design and analysis of series and shunt MEMS switches," Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Univ. Michigan, Ann Arbor, MI (2001).
  20. J. J. Blech, "On isothermal squeeze films," J. Lubr. Technol. 105, 615-620 (1983).
    [CrossRef]

2007 (2)

I. W. Jung, J. S. Wang, and O. Solgaard, "Optical pattern generation using a, spatial light modulator for maskless lithography," IEEE J. Sel. Top. Quantum Electron. 13, 147-154 (2007).
[CrossRef]

Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett. 90, 031911 (2007).
[CrossRef]

2006 (1)

Y. Kanamori, M. Shimono, and K. Hane, "Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates," IEEE Photon. Technol. Lett. 18, 2126-2128 (2006).
[CrossRef]

2005 (4)

W. Suh, O. Solgaard, and S. Fan, "Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs," J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

S. D. Senturia, D. R. Day, M. A. Butler, and M. C. Smith, "Programmable diffraction gratings and their uses in displays, spectroscopy, and communications," J. Microlithogr. Microfabr. Microsyst. 4, 041401-041406 (2005).
[CrossRef]

P. G. Steeneken, T. G. S. M. Rijks, J. T. M. Van Beek, M. J. E. Ulenaers, J. De Coster, and R. Puers, "Dynamics and squeeze film gas damping of a capacitive RF MEMS switch," J. Micromech. Microeng. 15, 176-184 (2005).
[CrossRef]

S. Chowdhury, M. Ahmadi, and W. C. Miller, "A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams," J. Micromech. Microeng. 15, 756-763 (2005).
[CrossRef]

2004 (2)

W. M. Van Spengen, R. Puers, R. Mertens, and I. De Wolf, "A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches," J. Micromech. Microeng. 14, 514-521 (2004).
[CrossRef]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316-4318 (2004).
[CrossRef]

2003 (1)

J. R. Reid, R. T. Webster, and L. A. Starman, "Noncontact measurement of charge induced voltage shift in capacitive MEM-switches," IEEE Microwave Wirel. Compon. Lett. 13, 367-369 (2003).
[CrossRef]

2001 (2)

J. M. Huang, K. M. Liew, C. H. Wong, S. Rajendran, M. J. Tan, and A. Q. Liu, "Mechanical design and optimization of capacitive micromachined switch," Sens. Actuators A 93, 273-285 (2001).
[CrossRef]

C. Goldsmith, J. Ehmke, A. Malczewski, B. Pillans, S. Eshelman, Z. Yao, J. Brank, and M. Eberly, "Lifetime characterization of capacitive RF MEMS switches," IEEE MTT-S Int. Microwave Symp. Dig. 3, 227-230 (2001).

1999 (1)

M. W. Miles, "MEMS-based interferometric modulator for display applications," Proc. SPIE 3876, 20-28 (1999).
[CrossRef]

1998 (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

1997 (2)

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, "Sub-10 nm imprint lithography and applications," J. Vac. Sci. Technol. B 15, 2897 (1997).
[CrossRef]

1994 (1)

J. B. Sampsell, "Digital micromirror device and its application to projection displays," J. Vac. Sci. Technol. B 12, 3242-3246 (1994).
[CrossRef]

1983 (1)

J. J. Blech, "On isothermal squeeze films," J. Lubr. Technol. 105, 615-620 (1983).
[CrossRef]

1902 (1)

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Proc. Phys. Soc. London 18, 269-275 (1902).
[CrossRef]

Ahmadi, M.

S. Chowdhury, M. Ahmadi, and W. C. Miller, "A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams," J. Micromech. Microeng. 15, 756-763 (2005).
[CrossRef]

Blech, J. J.

J. J. Blech, "On isothermal squeeze films," J. Lubr. Technol. 105, 615-620 (1983).
[CrossRef]

Brank, J.

C. Goldsmith, J. Ehmke, A. Malczewski, B. Pillans, S. Eshelman, Z. Yao, J. Brank, and M. Eberly, "Lifetime characterization of capacitive RF MEMS switches," IEEE MTT-S Int. Microwave Symp. Dig. 3, 227-230 (2001).

Butler, M. A.

S. D. Senturia, D. R. Day, M. A. Butler, and M. C. Smith, "Programmable diffraction gratings and their uses in displays, spectroscopy, and communications," J. Microlithogr. Microfabr. Microsyst. 4, 041401-041406 (2005).
[CrossRef]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, "Sub-10 nm imprint lithography and applications," J. Vac. Sci. Technol. B 15, 2897 (1997).
[CrossRef]

Chowdhury, S.

S. Chowdhury, M. Ahmadi, and W. C. Miller, "A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams," J. Micromech. Microeng. 15, 756-763 (2005).
[CrossRef]

Day, D. R.

S. D. Senturia, D. R. Day, M. A. Butler, and M. C. Smith, "Programmable diffraction gratings and their uses in displays, spectroscopy, and communications," J. Microlithogr. Microfabr. Microsyst. 4, 041401-041406 (2005).
[CrossRef]

De Coster, J.

P. G. Steeneken, T. G. S. M. Rijks, J. T. M. Van Beek, M. J. E. Ulenaers, J. De Coster, and R. Puers, "Dynamics and squeeze film gas damping of a capacitive RF MEMS switch," J. Micromech. Microeng. 15, 176-184 (2005).
[CrossRef]

De Wolf, I.

W. M. Van Spengen, R. Puers, R. Mertens, and I. De Wolf, "A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches," J. Micromech. Microeng. 14, 514-521 (2004).
[CrossRef]

Ebbesen, T. W.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Eberly, M.

C. Goldsmith, J. Ehmke, A. Malczewski, B. Pillans, S. Eshelman, Z. Yao, J. Brank, and M. Eberly, "Lifetime characterization of capacitive RF MEMS switches," IEEE MTT-S Int. Microwave Symp. Dig. 3, 227-230 (2001).

Ehmke, J.

C. Goldsmith, J. Ehmke, A. Malczewski, B. Pillans, S. Eshelman, Z. Yao, J. Brank, and M. Eberly, "Lifetime characterization of capacitive RF MEMS switches," IEEE MTT-S Int. Microwave Symp. Dig. 3, 227-230 (2001).

Eshelman, S.

C. Goldsmith, J. Ehmke, A. Malczewski, B. Pillans, S. Eshelman, Z. Yao, J. Brank, and M. Eberly, "Lifetime characterization of capacitive RF MEMS switches," IEEE MTT-S Int. Microwave Symp. Dig. 3, 227-230 (2001).

Fan, S.

W. Suh, O. Solgaard, and S. Fan, "Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs," J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Goldsmith, C.

C. Goldsmith, J. Ehmke, A. Malczewski, B. Pillans, S. Eshelman, Z. Yao, J. Brank, and M. Eberly, "Lifetime characterization of capacitive RF MEMS switches," IEEE MTT-S Int. Microwave Symp. Dig. 3, 227-230 (2001).

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Guo, L.

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, "Sub-10 nm imprint lithography and applications," J. Vac. Sci. Technol. B 15, 2897 (1997).
[CrossRef]

Hane, K.

Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett. 90, 031911 (2007).
[CrossRef]

Y. Kanamori, M. Shimono, and K. Hane, "Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates," IEEE Photon. Technol. Lett. 18, 2126-2128 (2006).
[CrossRef]

Huang, J. M.

J. M. Huang, K. M. Liew, C. H. Wong, S. Rajendran, M. J. Tan, and A. Q. Liu, "Mechanical design and optimization of capacitive micromachined switch," Sens. Actuators A 93, 273-285 (2001).
[CrossRef]

Jung, I. W.

I. W. Jung, J. S. Wang, and O. Solgaard, "Optical pattern generation using a, spatial light modulator for maskless lithography," IEEE J. Sel. Top. Quantum Electron. 13, 147-154 (2007).
[CrossRef]

Kanamori, Y.

Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett. 90, 031911 (2007).
[CrossRef]

Y. Kanamori, M. Shimono, and K. Hane, "Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates," IEEE Photon. Technol. Lett. 18, 2126-2128 (2006).
[CrossRef]

Kitani, T.

Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett. 90, 031911 (2007).
[CrossRef]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, "Sub-10 nm imprint lithography and applications," J. Vac. Sci. Technol. B 15, 2897 (1997).
[CrossRef]

Kuipers, L.

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316-4318 (2004).
[CrossRef]

Lezec, H. J.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Liew, K. M.

J. M. Huang, K. M. Liew, C. H. Wong, S. Rajendran, M. J. Tan, and A. Q. Liu, "Mechanical design and optimization of capacitive micromachined switch," Sens. Actuators A 93, 273-285 (2001).
[CrossRef]

Liu, A. Q.

J. M. Huang, K. M. Liew, C. H. Wong, S. Rajendran, M. J. Tan, and A. Q. Liu, "Mechanical design and optimization of capacitive micromachined switch," Sens. Actuators A 93, 273-285 (2001).
[CrossRef]

Malczewski, A.

C. Goldsmith, J. Ehmke, A. Malczewski, B. Pillans, S. Eshelman, Z. Yao, J. Brank, and M. Eberly, "Lifetime characterization of capacitive RF MEMS switches," IEEE MTT-S Int. Microwave Symp. Dig. 3, 227-230 (2001).

Mertens, R.

W. M. Van Spengen, R. Puers, R. Mertens, and I. De Wolf, "A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches," J. Micromech. Microeng. 14, 514-521 (2004).
[CrossRef]

Miles, M. W.

M. W. Miles, "MEMS-based interferometric modulator for display applications," Proc. SPIE 3876, 20-28 (1999).
[CrossRef]

Miller, W. C.

S. Chowdhury, M. Ahmadi, and W. C. Miller, "A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams," J. Micromech. Microeng. 15, 756-763 (2005).
[CrossRef]

Pillans, B.

C. Goldsmith, J. Ehmke, A. Malczewski, B. Pillans, S. Eshelman, Z. Yao, J. Brank, and M. Eberly, "Lifetime characterization of capacitive RF MEMS switches," IEEE MTT-S Int. Microwave Symp. Dig. 3, 227-230 (2001).

Puers, R.

P. G. Steeneken, T. G. S. M. Rijks, J. T. M. Van Beek, M. J. E. Ulenaers, J. De Coster, and R. Puers, "Dynamics and squeeze film gas damping of a capacitive RF MEMS switch," J. Micromech. Microeng. 15, 176-184 (2005).
[CrossRef]

W. M. Van Spengen, R. Puers, R. Mertens, and I. De Wolf, "A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches," J. Micromech. Microeng. 14, 514-521 (2004).
[CrossRef]

Rajendran, S.

J. M. Huang, K. M. Liew, C. H. Wong, S. Rajendran, M. J. Tan, and A. Q. Liu, "Mechanical design and optimization of capacitive micromachined switch," Sens. Actuators A 93, 273-285 (2001).
[CrossRef]

Reid, J. R.

J. R. Reid, R. T. Webster, and L. A. Starman, "Noncontact measurement of charge induced voltage shift in capacitive MEM-switches," IEEE Microwave Wirel. Compon. Lett. 13, 367-369 (2003).
[CrossRef]

Rijks, T. G. S. M.

P. G. Steeneken, T. G. S. M. Rijks, J. T. M. Van Beek, M. J. E. Ulenaers, J. De Coster, and R. Puers, "Dynamics and squeeze film gas damping of a capacitive RF MEMS switch," J. Micromech. Microeng. 15, 176-184 (2005).
[CrossRef]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Sampsell, J. B.

J. B. Sampsell, "Digital micromirror device and its application to projection displays," J. Vac. Sci. Technol. B 12, 3242-3246 (1994).
[CrossRef]

Segerink, F. B.

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316-4318 (2004).
[CrossRef]

Senturia, S. D.

S. D. Senturia, D. R. Day, M. A. Butler, and M. C. Smith, "Programmable diffraction gratings and their uses in displays, spectroscopy, and communications," J. Microlithogr. Microfabr. Microsyst. 4, 041401-041406 (2005).
[CrossRef]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Shimono, M.

Y. Kanamori, M. Shimono, and K. Hane, "Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates," IEEE Photon. Technol. Lett. 18, 2126-2128 (2006).
[CrossRef]

Smith, M. C.

S. D. Senturia, D. R. Day, M. A. Butler, and M. C. Smith, "Programmable diffraction gratings and their uses in displays, spectroscopy, and communications," J. Microlithogr. Microfabr. Microsyst. 4, 041401-041406 (2005).
[CrossRef]

Solgaard, O.

I. W. Jung, J. S. Wang, and O. Solgaard, "Optical pattern generation using a, spatial light modulator for maskless lithography," IEEE J. Sel. Top. Quantum Electron. 13, 147-154 (2007).
[CrossRef]

W. Suh, O. Solgaard, and S. Fan, "Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs," J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

Starman, L. A.

J. R. Reid, R. T. Webster, and L. A. Starman, "Noncontact measurement of charge induced voltage shift in capacitive MEM-switches," IEEE Microwave Wirel. Compon. Lett. 13, 367-369 (2003).
[CrossRef]

Steeneken, P. G.

P. G. Steeneken, T. G. S. M. Rijks, J. T. M. Van Beek, M. J. E. Ulenaers, J. De Coster, and R. Puers, "Dynamics and squeeze film gas damping of a capacitive RF MEMS switch," J. Micromech. Microeng. 15, 176-184 (2005).
[CrossRef]

Suh, W.

W. Suh, O. Solgaard, and S. Fan, "Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs," J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

Tan, M. J.

J. M. Huang, K. M. Liew, C. H. Wong, S. Rajendran, M. J. Tan, and A. Q. Liu, "Mechanical design and optimization of capacitive micromachined switch," Sens. Actuators A 93, 273-285 (2001).
[CrossRef]

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Ulenaers, M. J. E.

P. G. Steeneken, T. G. S. M. Rijks, J. T. M. Van Beek, M. J. E. Ulenaers, J. De Coster, and R. Puers, "Dynamics and squeeze film gas damping of a capacitive RF MEMS switch," J. Micromech. Microeng. 15, 176-184 (2005).
[CrossRef]

Van Beek, J. T. M.

P. G. Steeneken, T. G. S. M. Rijks, J. T. M. Van Beek, M. J. E. Ulenaers, J. De Coster, and R. Puers, "Dynamics and squeeze film gas damping of a capacitive RF MEMS switch," J. Micromech. Microeng. 15, 176-184 (2005).
[CrossRef]

van der Molen, K. L.

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316-4318 (2004).
[CrossRef]

van Hulst, N. F.

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316-4318 (2004).
[CrossRef]

Van Spengen, W. M.

W. M. Van Spengen, R. Puers, R. Mertens, and I. De Wolf, "A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches," J. Micromech. Microeng. 14, 514-521 (2004).
[CrossRef]

Wang, J. S.

I. W. Jung, J. S. Wang, and O. Solgaard, "Optical pattern generation using a, spatial light modulator for maskless lithography," IEEE J. Sel. Top. Quantum Electron. 13, 147-154 (2007).
[CrossRef]

Webster, R. T.

J. R. Reid, R. T. Webster, and L. A. Starman, "Noncontact measurement of charge induced voltage shift in capacitive MEM-switches," IEEE Microwave Wirel. Compon. Lett. 13, 367-369 (2003).
[CrossRef]

Wong, C. H.

J. M. Huang, K. M. Liew, C. H. Wong, S. Rajendran, M. J. Tan, and A. Q. Liu, "Mechanical design and optimization of capacitive micromachined switch," Sens. Actuators A 93, 273-285 (2001).
[CrossRef]

Wood, R. W.

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Proc. Phys. Soc. London 18, 269-275 (1902).
[CrossRef]

Yao, Z.

C. Goldsmith, J. Ehmke, A. Malczewski, B. Pillans, S. Eshelman, Z. Yao, J. Brank, and M. Eberly, "Lifetime characterization of capacitive RF MEMS switches," IEEE MTT-S Int. Microwave Symp. Dig. 3, 227-230 (2001).

Zhang, W.

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, "Sub-10 nm imprint lithography and applications," J. Vac. Sci. Technol. B 15, 2897 (1997).
[CrossRef]

Zhuang, L.

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, "Sub-10 nm imprint lithography and applications," J. Vac. Sci. Technol. B 15, 2897 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett. 90, 031911 (2007).
[CrossRef]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316-4318 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

I. W. Jung, J. S. Wang, and O. Solgaard, "Optical pattern generation using a, spatial light modulator for maskless lithography," IEEE J. Sel. Top. Quantum Electron. 13, 147-154 (2007).
[CrossRef]

IEEE Microwave Wirel. Compon. Lett. (1)

J. R. Reid, R. T. Webster, and L. A. Starman, "Noncontact measurement of charge induced voltage shift in capacitive MEM-switches," IEEE Microwave Wirel. Compon. Lett. 13, 367-369 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Kanamori, M. Shimono, and K. Hane, "Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates," IEEE Photon. Technol. Lett. 18, 2126-2128 (2006).
[CrossRef]

J. Appl. Phys. (1)

W. Suh, O. Solgaard, and S. Fan, "Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs," J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

J. Lubr. Technol. (1)

J. J. Blech, "On isothermal squeeze films," J. Lubr. Technol. 105, 615-620 (1983).
[CrossRef]

J. Micromech. Microeng. (3)

W. M. Van Spengen, R. Puers, R. Mertens, and I. De Wolf, "A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches," J. Micromech. Microeng. 14, 514-521 (2004).
[CrossRef]

P. G. Steeneken, T. G. S. M. Rijks, J. T. M. Van Beek, M. J. E. Ulenaers, J. De Coster, and R. Puers, "Dynamics and squeeze film gas damping of a capacitive RF MEMS switch," J. Micromech. Microeng. 15, 176-184 (2005).
[CrossRef]

S. Chowdhury, M. Ahmadi, and W. C. Miller, "A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams," J. Micromech. Microeng. 15, 756-763 (2005).
[CrossRef]

J. Vac. Sci. Technol. B (2)

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, "Sub-10 nm imprint lithography and applications," J. Vac. Sci. Technol. B 15, 2897 (1997).
[CrossRef]

J. B. Sampsell, "Digital micromirror device and its application to projection displays," J. Vac. Sci. Technol. B 12, 3242-3246 (1994).
[CrossRef]

Microsyst. (1)

S. D. Senturia, D. R. Day, M. A. Butler, and M. C. Smith, "Programmable diffraction gratings and their uses in displays, spectroscopy, and communications," J. Microlithogr. Microfabr. Microsyst. 4, 041401-041406 (2005).
[CrossRef]

Microwave Symp. Dig. (1)

C. Goldsmith, J. Ehmke, A. Malczewski, B. Pillans, S. Eshelman, Z. Yao, J. Brank, and M. Eberly, "Lifetime characterization of capacitive RF MEMS switches," IEEE MTT-S Int. Microwave Symp. Dig. 3, 227-230 (2001).

Phys. Rev. B (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Proc. Phys. Soc. London (1)

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Proc. Phys. Soc. London 18, 269-275 (1902).
[CrossRef]

Proc. SPIE (1)

M. W. Miles, "MEMS-based interferometric modulator for display applications," Proc. SPIE 3876, 20-28 (1999).
[CrossRef]

Sens. Actuators A (1)

J. M. Huang, K. M. Liew, C. H. Wong, S. Rajendran, M. J. Tan, and A. Q. Liu, "Mechanical design and optimization of capacitive micromachined switch," Sens. Actuators A 93, 273-285 (2001).
[CrossRef]

Other (1)

J. B. Muldavin, "Design and analysis of series and shunt MEMS switches," Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Univ. Michigan, Ann Arbor, MI (2001).

Supplementary Material (2)

» Media 1: AVI (930 KB)     
» Media 2: AVI (880 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a). The pixel surface is coated with a metal of thickness t and patterned with a 2D square array of holes with period Λ and hole diameter a. (b) In the quiescent (OFF) state, no voltage is applied to the pixel; and an air gap separates the pixel from the glass plate. (c) The pixel is switched ON by applying a voltage between the ITO and metal layers, causing the pixel to snap into contact with the glass plate.

Fig. 2.
Fig. 2.

Reflectivity of a silver-coated pixel with Λ = 500 nm, a = 170 nm, and t = 100 nm simulated using RCW analysis.

Fig. 3.
Fig. 3.

(Left) Schematic representation of a single MEMS pixel supported by four flexures. The scale of the grating is exaggerated for clarity. (Right) Cross-section view showing the pixel chip bonded to a top glass plate coated with an indium tin oxide (ITO) top electrode and SiO2 insulator.

Fig. 4.
Fig. 4.

Fabrication process flow for MEMS pixel arrays. Nanoimprint lithography (NIL) was used to pattern an array of nanoholes into the Si device layer. Contact lithography was used to pattern through wafer etch holes and the MEMS pixel structure. The top plate was made by depositing ITO and SiO2 on a quartz wafer with patterned photoresist to provide the spacing between the pixel array and the top electrode.

Fig. 5.
Fig. 5.

(Left) Optical micrograph of completed MEMS pixel. The pixel is 140 µm by 140 µm square with 10 µm wide flexures. The nanohole pattern is not visible in the optical image. (Right) Scanning electron micrograph (SEM) of grating pattern etched into a silicon substrate by RIE.

Fig. 6.
Fig. 6.

Interferometric profile of MEMS pixel. The average measured radius of curvature of the pixel was 37.7 mm. The image is of the backside of the pixel, as the curvature of the pixel could not be measured through the top glass plate.

Fig. 7.
Fig. 7.

Image of MEMS pixels when illuminated with green-yellow light and seen through a microscope. (a) and (b) show a pixel with a nanoimprinted Al grating, while (c) and (d) show a pixel that does not have the grating. (a) Pixel in the OFF state. (b) Actuated pixel in the ON state. Notice the change in color from green-yellow to orange-red with actuation. (c) Pixel in the OFF state. (d) Pixel in the ON state. (931 KB) Movie of light modulation with MEMS pixel with grating. (880 KB) Movie showing a pixel without the nanoimprinted grating switching ON and OFF. [Media 1][Media 2]

Fig. 8.
Fig. 8.

Reflectivity measurements performed on large area gratings. Each grating was mounted beneath a glass wafer, and the reflectivity was measured with the grating pressed into contact with the glass wafer and separated by an air gap. Left: Ag grating. Right: Al grating.

Fig. 9.
Fig. 9.

Reflectivity measurements of a MEMS pixel with and without actuation. The reflectivity at 560 nm is 34 % in the OFF state and 55 % in the ON state.

Fig. 10.
Fig. 10.

Measured pixel displacement versus applied voltage. The arrows indicate the direction of pixel motion as the voltage is swept from 0 V to 15 V, back down from 15 V to -15 V, then returning from -15 V to 0 V.

Fig. 11.
Fig. 11.

Measured deflection of MEMS pixel from application of 23 V square wave. Switching time is 80 µs.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ ij = n Λ i 2 + j 2 .
λ SP , ij = λ ij ε m ( ε m + n 2 ) .
V p = 8 k ( g + t d ε r ) 3 ( 27 ε 0 A )
V H = 27 t d V P ( 2 g ε r ) .
b = ( 3 2 π ) μ A 2 g 3
t s = 2 b g 0 3 ( 3 ε 0 A V S 2 )

Metrics