Abstract

We propose a self-optimization and auto-stabilization method for a 1-bit DMZI in DPSK transmission. Using the characteristics of eye patterns, the optical frequency transmittance of a 1-bit DMZI is thermally controlled to maximize the power difference between the constructive and destructive output ports. Unlike other techniques, this control method can be realized without additional components, making it simple and cost effective. Experimental results show that error-free performance is maintained when the carrier optical frequency variation is ~10% of the data rate.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Leibrich,  et al., "CF-RZ-DPSK for suppression of XPM on dispersion-managed long-haul optical WDM transmission on standard single-mode fiber," IEEE Photon. Technol. Lett. 14, 155-157 (2002).
    [CrossRef]
  2. S. R. Chinn,  et al., "Sensitivity of optically preamplified DPSK receivers with Fabry-Perot filters," J. Lightwave Technol. 14, 370-376 (1996).
    [CrossRef]
  3. S. Ferber,  et al., "160Gbit/s DPSK transmission over 320 km fiber link with high long-term stability," Electron. Lett. 41, 200-201 (2005).
    [CrossRef]
  4. H. Sinsky,  et al., " RZ-DPSK transmission using a 42.7-Gb/s integrated balanced optical front end with record sensitivity," J. Lightwave Technol. 22, 180-185 (2004).
    [CrossRef]
  5. T. Hoshida,  et al., "Optimal 40Gb/s modulation formats for spectrally efficient long-haul DWDM systems," J. Lightwave Technol. 20, 1989-1996 (2002).
    [CrossRef]
  6. P. J. Winzer and H. Kim, "Degradations in balanced DPSK receivers," IEEE Photon. Technol. Lett. 15, 1282-1284 (2003).
    [CrossRef]
  7. E. A. Swanson,  et al., "High sensitivity optically preamplified direct detection DPSK receiver with active delay-line stabilization," IEEE Photon. Technol. Lett. 6, 263-265 (1994).
    [CrossRef]
  8. Y. S. Jang,  et al., "Self-optimization and stabilization of delayed MZI in DPSK receiver," Proc. ECOC, We4. P.016 (2005).

2005 (1)

S. Ferber,  et al., "160Gbit/s DPSK transmission over 320 km fiber link with high long-term stability," Electron. Lett. 41, 200-201 (2005).
[CrossRef]

2004 (1)

2003 (1)

P. J. Winzer and H. Kim, "Degradations in balanced DPSK receivers," IEEE Photon. Technol. Lett. 15, 1282-1284 (2003).
[CrossRef]

2002 (2)

T. Hoshida,  et al., "Optimal 40Gb/s modulation formats for spectrally efficient long-haul DWDM systems," J. Lightwave Technol. 20, 1989-1996 (2002).
[CrossRef]

J. Leibrich,  et al., "CF-RZ-DPSK for suppression of XPM on dispersion-managed long-haul optical WDM transmission on standard single-mode fiber," IEEE Photon. Technol. Lett. 14, 155-157 (2002).
[CrossRef]

1996 (1)

S. R. Chinn,  et al., "Sensitivity of optically preamplified DPSK receivers with Fabry-Perot filters," J. Lightwave Technol. 14, 370-376 (1996).
[CrossRef]

1994 (1)

E. A. Swanson,  et al., "High sensitivity optically preamplified direct detection DPSK receiver with active delay-line stabilization," IEEE Photon. Technol. Lett. 6, 263-265 (1994).
[CrossRef]

Chinn, S. R.

S. R. Chinn,  et al., "Sensitivity of optically preamplified DPSK receivers with Fabry-Perot filters," J. Lightwave Technol. 14, 370-376 (1996).
[CrossRef]

Ferber, S.

S. Ferber,  et al., "160Gbit/s DPSK transmission over 320 km fiber link with high long-term stability," Electron. Lett. 41, 200-201 (2005).
[CrossRef]

Hoshida, T.

Kim, H.

P. J. Winzer and H. Kim, "Degradations in balanced DPSK receivers," IEEE Photon. Technol. Lett. 15, 1282-1284 (2003).
[CrossRef]

Leibrich, J.

J. Leibrich,  et al., "CF-RZ-DPSK for suppression of XPM on dispersion-managed long-haul optical WDM transmission on standard single-mode fiber," IEEE Photon. Technol. Lett. 14, 155-157 (2002).
[CrossRef]

Sinsky, H.

Swanson, E. A.

E. A. Swanson,  et al., "High sensitivity optically preamplified direct detection DPSK receiver with active delay-line stabilization," IEEE Photon. Technol. Lett. 6, 263-265 (1994).
[CrossRef]

Winzer, P. J.

P. J. Winzer and H. Kim, "Degradations in balanced DPSK receivers," IEEE Photon. Technol. Lett. 15, 1282-1284 (2003).
[CrossRef]

Electron. Lett. (1)

S. Ferber,  et al., "160Gbit/s DPSK transmission over 320 km fiber link with high long-term stability," Electron. Lett. 41, 200-201 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. Leibrich,  et al., "CF-RZ-DPSK for suppression of XPM on dispersion-managed long-haul optical WDM transmission on standard single-mode fiber," IEEE Photon. Technol. Lett. 14, 155-157 (2002).
[CrossRef]

P. J. Winzer and H. Kim, "Degradations in balanced DPSK receivers," IEEE Photon. Technol. Lett. 15, 1282-1284 (2003).
[CrossRef]

E. A. Swanson,  et al., "High sensitivity optically preamplified direct detection DPSK receiver with active delay-line stabilization," IEEE Photon. Technol. Lett. 6, 263-265 (1994).
[CrossRef]

J. Lightwave Technol. (3)

Other (1)

Y. S. Jang,  et al., "Self-optimization and stabilization of delayed MZI in DPSK receiver," Proc. ECOC, We4. P.016 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

DPSK receiver (DMZI: Delayed Mach-Zehnder Interferometer, Td: Time-delay)

Fig. 2.
Fig. 2.

Optical frequency transmittance curve of 1-bit DMZI

Fig. 3.
Fig. 3.

Measured performance vs. variation of input frequency. (a). Power penalty vs. frequency variation. (b). Eye opening without frequency variation. (c). Eye opening with 400MHz frequency shift.

Fig. 4.
Fig. 4.

Two output signals from balanced receiver vs. variation of input frequency. (a). Output powers of each port vs. frequency variation. (b). Eye opening at optimum point. (c). Eye opening after shifting input frequency.

Fig. 5.
Fig. 5.

Circuit diagram for location and maintenance of the optimum operating point for 1-bit DMZI

Fig. 6.
Fig. 6.

Results of search and stabilization of 1-bit DMZI with control

Fig. 7.
Fig. 7.

Measured BER vs. variation of input frequency (a) without stabilization control, (b) with stabilization control.

Fig. 8.
Fig. 8.

Stabilization control results

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E Constructive ( t ) = 1 2 [ e j ϕ ( t ) + e j ϕ ( t T d ) ] E in
= e j ( ϕ ( t ) + ϕ ( t T d ) 2 ) cos ( ϕ ( t ) ϕ ( t T d ) 2 ) E in
I = 1 , for ϕ ( t ) ϕ ( t T d ) = 0
= 0 , for ϕ ( t ) ϕ ( t T d ) = π
T Constructive cos 2 ( πnfL d c )
T Destructive sin 2 ( πnfL d c )
P port = P 0 + P 1 2 sin 2 ( πnfL d c ) + cos 2 ( πnfL d c ) 2 = const .

Metrics