Abstract

A new way to control the harmonic mode-locking and multiple pulsing operation with the pulse duration unaffected of a Kerr-lens mode-locked Ti:sapphire laser was demonstrated. When the effective nonlinear length of the nonlinear medium which was inserted in the Ti:sapphire laser was varied by changing the position of the medium or the pump power of the laser, stable harmonic mode-locking and multiple-pulse operation were observed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Grelu, F. Belhache, F. Gutty, and J. M. Soto-Crespo, "Relative phase locking of pulses in a passively mode-locked fiber laser," J. Opt. Soc. Am. B 20, 863 (2003).
    [CrossRef]
  2. Ph. Grelu and J. M. Soto-Crespo, "Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser," J. Opt. B: Quantum Semiclassical Opt. 6, S271 (2004).
    [CrossRef]
  3. A. Komarov, H. Leblond, and F. Sanchez, "Multistability and hysteresis phenomena in passively mode-locked fiber lasers," Phys. Rev. A 71,053809 (2005).
    [CrossRef]
  4. J. Aus der Au, D. Kopf, F. Morier-Genoud, M. Moser, and U. Keller, "60-fs pulses from a diode-pumped Nd:glass laser," Opt. Lett. 22, 307 (1997).
    [CrossRef]
  5. M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, N. N. Akhmediev, and J. M. Soto-Crespo, "Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror," J. Opt. Soc. Am. B 16, 895 (1999).
    [CrossRef]
  6. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, "Ultrabroadband femtosecond lasers," IEEE J. Quantum Electron. 30, 1100 (1994).
    [CrossRef]
  7. C. Wang, W. Zhang, K. F. Lee, and K. M. Yoo, "Pulse splitting in a self-mode-locked Ti: sapphire laser," Opt. Commun. 137, 89 (1997).
    [CrossRef]
  8. B. C. Collings, K. Bergman, and W. H. Knox, "True fundamental solitons in a passively mode-locked short-cavity Cr4+:YAG laser," Opt. Lett. 22, 1098 (1997).
    [CrossRef] [PubMed]
  9. J. H. Lin, W. F. Hsieh, and H. H. Wu, "Harmonic mode locking and multiple pulsing in a soft-aperture Kerr-lens mode-locked Ti:sapphire laser," Opt. Commun. 212, 149 (2002).
    [CrossRef]
  10. B. C. Collings, K. Bergman, and W. H. Knox, "Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser," Opt. Lett. 23, 123 (1998).
    [CrossRef]
  11. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
    [CrossRef]
  12. J. Nathan Kutz, B. C. Collings, K. Bergman, and W. H. Knox, "Stabilized pulse spacing in soliton lasers due to gain depletionand recovery," IEEE J. Quantum Electron. 34, 1749 (1998).
    [CrossRef]
  13. C. J. Zhu, J. F. He, and S. C. Wang, "Generation of synchronized femtosecond and picosecond pulses in a dual-wavelength femtosecond Ti:sapphire laser," Opt. Lett. 30, 561 (2005).
    [CrossRef] [PubMed]

2005 (3)

A. Komarov, H. Leblond, and F. Sanchez, "Multistability and hysteresis phenomena in passively mode-locked fiber lasers," Phys. Rev. A 71,053809 (2005).
[CrossRef]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

C. J. Zhu, J. F. He, and S. C. Wang, "Generation of synchronized femtosecond and picosecond pulses in a dual-wavelength femtosecond Ti:sapphire laser," Opt. Lett. 30, 561 (2005).
[CrossRef] [PubMed]

2004 (1)

Ph. Grelu and J. M. Soto-Crespo, "Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser," J. Opt. B: Quantum Semiclassical Opt. 6, S271 (2004).
[CrossRef]

2003 (1)

2002 (1)

J. H. Lin, W. F. Hsieh, and H. H. Wu, "Harmonic mode locking and multiple pulsing in a soft-aperture Kerr-lens mode-locked Ti:sapphire laser," Opt. Commun. 212, 149 (2002).
[CrossRef]

1999 (1)

1998 (2)

J. Nathan Kutz, B. C. Collings, K. Bergman, and W. H. Knox, "Stabilized pulse spacing in soliton lasers due to gain depletionand recovery," IEEE J. Quantum Electron. 34, 1749 (1998).
[CrossRef]

B. C. Collings, K. Bergman, and W. H. Knox, "Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser," Opt. Lett. 23, 123 (1998).
[CrossRef]

1997 (3)

1994 (1)

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, "Ultrabroadband femtosecond lasers," IEEE J. Quantum Electron. 30, 1100 (1994).
[CrossRef]

Akhmediev, N. N.

Belhache, F.

Bergman, K.

Brabec, T.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, "Ultrabroadband femtosecond lasers," IEEE J. Quantum Electron. 30, 1100 (1994).
[CrossRef]

Collings, B. C.

Curley, P. F.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, "Ultrabroadband femtosecond lasers," IEEE J. Quantum Electron. 30, 1100 (1994).
[CrossRef]

Grelu, P.

Grelu, Ph.

Ph. Grelu and J. M. Soto-Crespo, "Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser," J. Opt. B: Quantum Semiclassical Opt. 6, S271 (2004).
[CrossRef]

Gutty, F.

He, J. F.

Hsieh, W. F.

J. H. Lin, W. F. Hsieh, and H. H. Wu, "Harmonic mode locking and multiple pulsing in a soft-aperture Kerr-lens mode-locked Ti:sapphire laser," Opt. Commun. 212, 149 (2002).
[CrossRef]

Jagadish, C.

Knox, W. H.

Komarov, A.

A. Komarov, H. Leblond, and F. Sanchez, "Multistability and hysteresis phenomena in passively mode-locked fiber lasers," Phys. Rev. A 71,053809 (2005).
[CrossRef]

Krausz, F.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, "Ultrabroadband femtosecond lasers," IEEE J. Quantum Electron. 30, 1100 (1994).
[CrossRef]

Leblond, H.

A. Komarov, H. Leblond, and F. Sanchez, "Multistability and hysteresis phenomena in passively mode-locked fiber lasers," Phys. Rev. A 71,053809 (2005).
[CrossRef]

Lederer, M. J.

Lee, K. F.

C. Wang, W. Zhang, K. F. Lee, and K. M. Yoo, "Pulse splitting in a self-mode-locked Ti: sapphire laser," Opt. Commun. 137, 89 (1997).
[CrossRef]

Lin, J. H.

J. H. Lin, W. F. Hsieh, and H. H. Wu, "Harmonic mode locking and multiple pulsing in a soft-aperture Kerr-lens mode-locked Ti:sapphire laser," Opt. Commun. 212, 149 (2002).
[CrossRef]

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Luther-Davies, B.

Nathan Kutz, J.

J. Nathan Kutz, B. C. Collings, K. Bergman, and W. H. Knox, "Stabilized pulse spacing in soliton lasers due to gain depletionand recovery," IEEE J. Quantum Electron. 34, 1749 (1998).
[CrossRef]

Sanchez, F.

A. Komarov, H. Leblond, and F. Sanchez, "Multistability and hysteresis phenomena in passively mode-locked fiber lasers," Phys. Rev. A 71,053809 (2005).
[CrossRef]

Soto-Crespo, J. M.

Spielmann, C.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, "Ultrabroadband femtosecond lasers," IEEE J. Quantum Electron. 30, 1100 (1994).
[CrossRef]

Tan, H. H.

Tang, D. Y.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Wang, C.

C. Wang, W. Zhang, K. F. Lee, and K. M. Yoo, "Pulse splitting in a self-mode-locked Ti: sapphire laser," Opt. Commun. 137, 89 (1997).
[CrossRef]

Wang, S. C.

Wu, H. H.

J. H. Lin, W. F. Hsieh, and H. H. Wu, "Harmonic mode locking and multiple pulsing in a soft-aperture Kerr-lens mode-locked Ti:sapphire laser," Opt. Commun. 212, 149 (2002).
[CrossRef]

Yoo, K. M.

C. Wang, W. Zhang, K. F. Lee, and K. M. Yoo, "Pulse splitting in a self-mode-locked Ti: sapphire laser," Opt. Commun. 137, 89 (1997).
[CrossRef]

Zhang, W.

C. Wang, W. Zhang, K. F. Lee, and K. M. Yoo, "Pulse splitting in a self-mode-locked Ti: sapphire laser," Opt. Commun. 137, 89 (1997).
[CrossRef]

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Zhao, L. M.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Zhu, C. J.

IEEE J. Quantum Electron. (2)

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, "Ultrabroadband femtosecond lasers," IEEE J. Quantum Electron. 30, 1100 (1994).
[CrossRef]

J. Nathan Kutz, B. C. Collings, K. Bergman, and W. H. Knox, "Stabilized pulse spacing in soliton lasers due to gain depletionand recovery," IEEE J. Quantum Electron. 34, 1749 (1998).
[CrossRef]

J. Opt. B: Quantum Semiclassical Opt. (1)

Ph. Grelu and J. M. Soto-Crespo, "Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser," J. Opt. B: Quantum Semiclassical Opt. 6, S271 (2004).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

C. Wang, W. Zhang, K. F. Lee, and K. M. Yoo, "Pulse splitting in a self-mode-locked Ti: sapphire laser," Opt. Commun. 137, 89 (1997).
[CrossRef]

J. H. Lin, W. F. Hsieh, and H. H. Wu, "Harmonic mode locking and multiple pulsing in a soft-aperture Kerr-lens mode-locked Ti:sapphire laser," Opt. Commun. 212, 149 (2002).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (2)

A. Komarov, H. Leblond, and F. Sanchez, "Multistability and hysteresis phenomena in passively mode-locked fiber lasers," Phys. Rev. A 71,053809 (2005).
[CrossRef]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the Ti:Sapphire laser. Ti:S1 and Ti:S2 are two Ti:sapphire crystals with 2.5 mm and 5 mm thickness, respectively. M1-M6 are broadband HR coated chirped mirrors and OC is the output coupler. M1, M2, M5 and M6 are concave mirrors with a curvature radius of 100 mm. The fused silica prisms P1 and P2 supply tunable dispersion.

Fig. 2.
Fig. 2.

(a). The average output power (solid symbol) and the pulse duration (open symbol) as functions of the position of Ti:S2 relative to the focus of the confocal cavity, where z is the position of Ti:S2 while z0 is the position of the focus, and n is the number of pulses in a round-trip time. (b) The effective nonlinear length as a function of the position.

Fig. 3.
Fig. 3.

Pulse trains and the corresponding rf-spectra observed while varying the position of Ti:S2. Normal mode locking (a and d), second harmonic mode-locking (b and e), and triple-pulse operation (c and f) are observed.

Fig. 4.
Fig. 4.

(a). Cross-correlation (green line and symbol) and auto-correlation (magenta line and symbol) measurements when the laser is second harmonic mode-locked. The blue (red) line is the Gaussian simulation of the cross-correlation (auto-correlation) trace. (b) For the second harmonic mode-locking, the RF spectrum shows a supper-mode suppression >38 dB.

Fig. 5.
Fig. 5.

The dependence of the number of pulses in a round-trip time on the value of N. The arrows show the pulse evolution while Ti:S2 is translated hereabout the confocal focus orderly. Here dash line and circle correspond to the situation that Ti:S2 moves towards the focus while solid line and square correspond to the opposite.

Fig. 6.
Fig. 6.

The average output power (solid symbol) and the pulse duration (open symbol) as functions of the pump power, where n is the number of pulses in a round-trip time.

Fig. 7.
Fig. 7.

The average output power (solid symbol) and pulse duration (open symbol) as functions of the net negative intra-cavity GVD where n is the number of pulses.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

i δu δz + β 2 2 2 u t 2 + γ u 2 u = 0 ,

Metrics