Abstract

In this paper, a novel approach to effectively extract location coordinates of 3-D objects employing a blur metric has been proposed. With elemental images of 3-D objects, plane object images (POIs) were reconstructed along the output plane using the CIIR (computational integral imaging reconstruction) algorithm, in which only the POIs reconstructed on the output planes where 3-D objects were originally located are focused whereas the other ones are blurred. Therefore, by calculating these blur metrics of the reconstructed POIs depth data of 3-D objects could be extracted. That is, the blur metric is the lowest on the focused point, but it starts to increase as (fill in the blank) moves away from that point. Accordingly, by finding out the points of inflection in the map of blur metric variation, the output planes where the objects were located were finally detected. To show the feasibility of our proposed scheme, some experiments were carried out and its results are presented as well.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-I. Park and S. Inoue, "Acquisition of sharp depth map from multiple cameras," Signal Processing: Image Commun. 14, 7-19 (1998).
    [CrossRef]
  2. J.-H. Ko and E.-S. Kim, "Stereoscopic video surveillance system for detection of Target's 3D location coordinates and moving trajectories," Opt. Commun. 191, 100-107 (2006).
  3. G. J. Iddan and G. Yahav, "Three-dimensional imaging in the studio and elsewhere," Proc. SPIE 4298, 48-55 (2000).
    [CrossRef]
  4. J.-H. Lee, J.-H. Ko, K.-J. Lee, J.-H. Jang, and E.-S. Kim, "Implementation of stereo camera-based automatic unmanned ground vehicle system for adaptive target detection," Proc. SPIE 5608, 188-197 (2004).
    [CrossRef]
  5. J.-H. Park, S. Jung, H. Choi, Y. Kim, and B. Lee, "Depth extraction by use of a rectangular lens array and one-dimensional elemental image modification," Appl. Opt. 43, 4882-4895 (2004).
    [CrossRef] [PubMed]
  6. J.-H. Park, Y. Kim, J. Kim, S.-W. Min, and B. Lee, "Three-dimensional display scheme based on integral imaging with three-dimensional information processing," Opt. Express. 12, 6020-6032 (2004).
    [CrossRef] [PubMed]
  7. S.-W. Min, B. Javidi, and B. Lee, "Enhanced three-dimensional integral imaging system by use of double display devices," Appl. Opt. 42, 4186-4195 (2003).
    [CrossRef] [PubMed]
  8. B. Javidi, R. Ponce-Díaz, and S. -H. Hong, "Three-dimensional recognition of occluded objects by using computational integral imaging," Opt. Lett.  31, 1106-1108 (2006).
    [CrossRef] [PubMed]
  9. J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, "Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images," Opt Commun. 276, 72-79 (2007).
    [CrossRef]
  10. H. Arimoto and B. Javidi, "Integral three-dimensional imaging with digital reconstruction," Opt. Lett. 26, 157-159 (2001).
    [CrossRef]
  11. S. Hong, J.-S. Jang, and B. Javidi, "Three-dimensional volumetric object reconstruction using computational integral imaging," Opt. Express. 12, 483-491 (2004).
    [CrossRef] [PubMed]
  12. D.-H. Shin, E.-S. Kim, and B. Lee, "Computational reconstruction technique of three-dimensional object in integral imaging using a Lenslet Array," Jpn. J. Appl. Phys. 44, 8016-8018 (2005).
    [CrossRef]
  13. D.-H. Shin, M. Cho, K.-C. Park, and E.-S. Kim, "Computational technique of volumetric object reconstruction in integral imaging by use of real and virtual image fields," ETRI J. 27, 208-712 (2005).
    [CrossRef]
  14. P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, "A no-reference perceptual blur metric," in the Proceedings of the International Conference on Image Processing, 3, 57-60 (2002).
  15. Y. C. Chung, J. M. Wang, R. R. Bailey, and S. W. Chen, "A non-parametric blur measure based on edge analysis for image processing applications," in the Proceedings of IEEE Conference on Cybernetics and Intelligent Systems (IEEE, 2004), 1, pp. 356-360.
  16. R. Youmaran, A. Adler, "Using red-eye to improve face detection in low quality video image," IEEE Canadian Conference on Electrical and Computer Engineering (IEEE, 2006), pp. 1940-1943.
  17. Z. Rahman, D. J. Jobson, and G. A. Woodell, "A multiscale retinex for color rendition and dynamic range compression," NASA Langley Technical Report (1996).

2007 (1)

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, "Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images," Opt Commun. 276, 72-79 (2007).
[CrossRef]

2006 (2)

J.-H. Ko and E.-S. Kim, "Stereoscopic video surveillance system for detection of Target's 3D location coordinates and moving trajectories," Opt. Commun. 191, 100-107 (2006).

B. Javidi, R. Ponce-Díaz, and S. -H. Hong, "Three-dimensional recognition of occluded objects by using computational integral imaging," Opt. Lett.  31, 1106-1108 (2006).
[CrossRef] [PubMed]

2005 (2)

D.-H. Shin, E.-S. Kim, and B. Lee, "Computational reconstruction technique of three-dimensional object in integral imaging using a Lenslet Array," Jpn. J. Appl. Phys. 44, 8016-8018 (2005).
[CrossRef]

D.-H. Shin, M. Cho, K.-C. Park, and E.-S. Kim, "Computational technique of volumetric object reconstruction in integral imaging by use of real and virtual image fields," ETRI J. 27, 208-712 (2005).
[CrossRef]

2004 (4)

S. Hong, J.-S. Jang, and B. Javidi, "Three-dimensional volumetric object reconstruction using computational integral imaging," Opt. Express. 12, 483-491 (2004).
[CrossRef] [PubMed]

J.-H. Lee, J.-H. Ko, K.-J. Lee, J.-H. Jang, and E.-S. Kim, "Implementation of stereo camera-based automatic unmanned ground vehicle system for adaptive target detection," Proc. SPIE 5608, 188-197 (2004).
[CrossRef]

J.-H. Park, S. Jung, H. Choi, Y. Kim, and B. Lee, "Depth extraction by use of a rectangular lens array and one-dimensional elemental image modification," Appl. Opt. 43, 4882-4895 (2004).
[CrossRef] [PubMed]

J.-H. Park, Y. Kim, J. Kim, S.-W. Min, and B. Lee, "Three-dimensional display scheme based on integral imaging with three-dimensional information processing," Opt. Express. 12, 6020-6032 (2004).
[CrossRef] [PubMed]

2003 (1)

2001 (1)

2000 (1)

G. J. Iddan and G. Yahav, "Three-dimensional imaging in the studio and elsewhere," Proc. SPIE 4298, 48-55 (2000).
[CrossRef]

1998 (1)

J.-I. Park and S. Inoue, "Acquisition of sharp depth map from multiple cameras," Signal Processing: Image Commun. 14, 7-19 (1998).
[CrossRef]

Arimoto, H.

Cho, M.

D.-H. Shin, M. Cho, K.-C. Park, and E.-S. Kim, "Computational technique of volumetric object reconstruction in integral imaging by use of real and virtual image fields," ETRI J. 27, 208-712 (2005).
[CrossRef]

Choi, H.

Hong, S.

S. Hong, J.-S. Jang, and B. Javidi, "Three-dimensional volumetric object reconstruction using computational integral imaging," Opt. Express. 12, 483-491 (2004).
[CrossRef] [PubMed]

Hong, S. -H.

Hwang, D.-C.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, "Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images," Opt Commun. 276, 72-79 (2007).
[CrossRef]

Iddan, G. J.

G. J. Iddan and G. Yahav, "Three-dimensional imaging in the studio and elsewhere," Proc. SPIE 4298, 48-55 (2000).
[CrossRef]

Inoue, S.

J.-I. Park and S. Inoue, "Acquisition of sharp depth map from multiple cameras," Signal Processing: Image Commun. 14, 7-19 (1998).
[CrossRef]

Jang, J.-H.

J.-H. Lee, J.-H. Ko, K.-J. Lee, J.-H. Jang, and E.-S. Kim, "Implementation of stereo camera-based automatic unmanned ground vehicle system for adaptive target detection," Proc. SPIE 5608, 188-197 (2004).
[CrossRef]

Jang, J.-S.

S. Hong, J.-S. Jang, and B. Javidi, "Three-dimensional volumetric object reconstruction using computational integral imaging," Opt. Express. 12, 483-491 (2004).
[CrossRef] [PubMed]

Javidi, B.

Jung, S.

Kim, E.-S.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, "Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images," Opt Commun. 276, 72-79 (2007).
[CrossRef]

J.-H. Ko and E.-S. Kim, "Stereoscopic video surveillance system for detection of Target's 3D location coordinates and moving trajectories," Opt. Commun. 191, 100-107 (2006).

D.-H. Shin, M. Cho, K.-C. Park, and E.-S. Kim, "Computational technique of volumetric object reconstruction in integral imaging by use of real and virtual image fields," ETRI J. 27, 208-712 (2005).
[CrossRef]

D.-H. Shin, E.-S. Kim, and B. Lee, "Computational reconstruction technique of three-dimensional object in integral imaging using a Lenslet Array," Jpn. J. Appl. Phys. 44, 8016-8018 (2005).
[CrossRef]

J.-H. Lee, J.-H. Ko, K.-J. Lee, J.-H. Jang, and E.-S. Kim, "Implementation of stereo camera-based automatic unmanned ground vehicle system for adaptive target detection," Proc. SPIE 5608, 188-197 (2004).
[CrossRef]

Kim, J.

J.-H. Park, Y. Kim, J. Kim, S.-W. Min, and B. Lee, "Three-dimensional display scheme based on integral imaging with three-dimensional information processing," Opt. Express. 12, 6020-6032 (2004).
[CrossRef] [PubMed]

Kim, Y.

J.-H. Park, Y. Kim, J. Kim, S.-W. Min, and B. Lee, "Three-dimensional display scheme based on integral imaging with three-dimensional information processing," Opt. Express. 12, 6020-6032 (2004).
[CrossRef] [PubMed]

J.-H. Park, S. Jung, H. Choi, Y. Kim, and B. Lee, "Depth extraction by use of a rectangular lens array and one-dimensional elemental image modification," Appl. Opt. 43, 4882-4895 (2004).
[CrossRef] [PubMed]

Ko, J.-H.

J.-H. Ko and E.-S. Kim, "Stereoscopic video surveillance system for detection of Target's 3D location coordinates and moving trajectories," Opt. Commun. 191, 100-107 (2006).

J.-H. Lee, J.-H. Ko, K.-J. Lee, J.-H. Jang, and E.-S. Kim, "Implementation of stereo camera-based automatic unmanned ground vehicle system for adaptive target detection," Proc. SPIE 5608, 188-197 (2004).
[CrossRef]

Lee, B.

D.-H. Shin, E.-S. Kim, and B. Lee, "Computational reconstruction technique of three-dimensional object in integral imaging using a Lenslet Array," Jpn. J. Appl. Phys. 44, 8016-8018 (2005).
[CrossRef]

J.-H. Park, Y. Kim, J. Kim, S.-W. Min, and B. Lee, "Three-dimensional display scheme based on integral imaging with three-dimensional information processing," Opt. Express. 12, 6020-6032 (2004).
[CrossRef] [PubMed]

J.-H. Park, S. Jung, H. Choi, Y. Kim, and B. Lee, "Depth extraction by use of a rectangular lens array and one-dimensional elemental image modification," Appl. Opt. 43, 4882-4895 (2004).
[CrossRef] [PubMed]

S.-W. Min, B. Javidi, and B. Lee, "Enhanced three-dimensional integral imaging system by use of double display devices," Appl. Opt. 42, 4186-4195 (2003).
[CrossRef] [PubMed]

Lee, J.-H.

J.-H. Lee, J.-H. Ko, K.-J. Lee, J.-H. Jang, and E.-S. Kim, "Implementation of stereo camera-based automatic unmanned ground vehicle system for adaptive target detection," Proc. SPIE 5608, 188-197 (2004).
[CrossRef]

Lee, K.-J.

J.-H. Lee, J.-H. Ko, K.-J. Lee, J.-H. Jang, and E.-S. Kim, "Implementation of stereo camera-based automatic unmanned ground vehicle system for adaptive target detection," Proc. SPIE 5608, 188-197 (2004).
[CrossRef]

Min, S.-W.

J.-H. Park, Y. Kim, J. Kim, S.-W. Min, and B. Lee, "Three-dimensional display scheme based on integral imaging with three-dimensional information processing," Opt. Express. 12, 6020-6032 (2004).
[CrossRef] [PubMed]

S.-W. Min, B. Javidi, and B. Lee, "Enhanced three-dimensional integral imaging system by use of double display devices," Appl. Opt. 42, 4186-4195 (2003).
[CrossRef] [PubMed]

Park, J.-H.

J.-H. Park, S. Jung, H. Choi, Y. Kim, and B. Lee, "Depth extraction by use of a rectangular lens array and one-dimensional elemental image modification," Appl. Opt. 43, 4882-4895 (2004).
[CrossRef] [PubMed]

J.-H. Park, Y. Kim, J. Kim, S.-W. Min, and B. Lee, "Three-dimensional display scheme based on integral imaging with three-dimensional information processing," Opt. Express. 12, 6020-6032 (2004).
[CrossRef] [PubMed]

Park, J.-I.

J.-I. Park and S. Inoue, "Acquisition of sharp depth map from multiple cameras," Signal Processing: Image Commun. 14, 7-19 (1998).
[CrossRef]

Park, J.-S.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, "Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images," Opt Commun. 276, 72-79 (2007).
[CrossRef]

Park, K.-C.

D.-H. Shin, M. Cho, K.-C. Park, and E.-S. Kim, "Computational technique of volumetric object reconstruction in integral imaging by use of real and virtual image fields," ETRI J. 27, 208-712 (2005).
[CrossRef]

Ponce-Díaz, R.

Shin, D.-H.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, "Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images," Opt Commun. 276, 72-79 (2007).
[CrossRef]

D.-H. Shin, M. Cho, K.-C. Park, and E.-S. Kim, "Computational technique of volumetric object reconstruction in integral imaging by use of real and virtual image fields," ETRI J. 27, 208-712 (2005).
[CrossRef]

D.-H. Shin, E.-S. Kim, and B. Lee, "Computational reconstruction technique of three-dimensional object in integral imaging using a Lenslet Array," Jpn. J. Appl. Phys. 44, 8016-8018 (2005).
[CrossRef]

Yahav, G.

G. J. Iddan and G. Yahav, "Three-dimensional imaging in the studio and elsewhere," Proc. SPIE 4298, 48-55 (2000).
[CrossRef]

Appl. Opt. (2)

ETRI J. (1)

D.-H. Shin, M. Cho, K.-C. Park, and E.-S. Kim, "Computational technique of volumetric object reconstruction in integral imaging by use of real and virtual image fields," ETRI J. 27, 208-712 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

D.-H. Shin, E.-S. Kim, and B. Lee, "Computational reconstruction technique of three-dimensional object in integral imaging using a Lenslet Array," Jpn. J. Appl. Phys. 44, 8016-8018 (2005).
[CrossRef]

Opt Commun. (1)

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, "Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images," Opt Commun. 276, 72-79 (2007).
[CrossRef]

Opt. Commun. (1)

J.-H. Ko and E.-S. Kim, "Stereoscopic video surveillance system for detection of Target's 3D location coordinates and moving trajectories," Opt. Commun. 191, 100-107 (2006).

Opt. Express. (2)

J.-H. Park, Y. Kim, J. Kim, S.-W. Min, and B. Lee, "Three-dimensional display scheme based on integral imaging with three-dimensional information processing," Opt. Express. 12, 6020-6032 (2004).
[CrossRef] [PubMed]

S. Hong, J.-S. Jang, and B. Javidi, "Three-dimensional volumetric object reconstruction using computational integral imaging," Opt. Express. 12, 483-491 (2004).
[CrossRef] [PubMed]

Opt. Lett. (2)

Proc. SPIE (2)

G. J. Iddan and G. Yahav, "Three-dimensional imaging in the studio and elsewhere," Proc. SPIE 4298, 48-55 (2000).
[CrossRef]

J.-H. Lee, J.-H. Ko, K.-J. Lee, J.-H. Jang, and E.-S. Kim, "Implementation of stereo camera-based automatic unmanned ground vehicle system for adaptive target detection," Proc. SPIE 5608, 188-197 (2004).
[CrossRef]

Signal Processing: Image Commun. (1)

J.-I. Park and S. Inoue, "Acquisition of sharp depth map from multiple cameras," Signal Processing: Image Commun. 14, 7-19 (1998).
[CrossRef]

Other (4)

P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, "A no-reference perceptual blur metric," in the Proceedings of the International Conference on Image Processing, 3, 57-60 (2002).

Y. C. Chung, J. M. Wang, R. R. Bailey, and S. W. Chen, "A non-parametric blur measure based on edge analysis for image processing applications," in the Proceedings of IEEE Conference on Cybernetics and Intelligent Systems (IEEE, 2004), 1, pp. 356-360.

R. Youmaran, A. Adler, "Using red-eye to improve face detection in low quality video image," IEEE Canadian Conference on Electrical and Computer Engineering (IEEE, 2006), pp. 1940-1943.

Z. Rahman, D. J. Jobson, and G. A. Woodell, "A multiscale retinex for color rendition and dynamic range compression," NASA Langley Technical Report (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Conceptual diagram of pickup and display processes in the integral imaging system: (a) Pickup process, (b) Display process.

Fig. 2.
Fig. 2.

Flowchart of the proposed scheme

Fig. 3.
Fig. 3.

Systematic diagram of computational pickup of a 3-D test object

Fig. 4.
Fig. 4.

Computationally generated elemental image array of the test object

Fig. 5.
Fig. 5.

Schematic of CIIR-based reconstruction of POIs from the picked-up EIA

Fig. 6.
Fig. 6.

POIs of the objects reconstructed along the output plane of z

Fig. 7.
Fig. 7.

Illustration of the Ψ-axis establishment for Pe (xe,ye )

Fig. 8.
Fig. 8.

MBM values of the POIs reconstructed along the output plane (For non-overlapped objects case).

Fig. 9.
Fig. 9.

Correlation outputs for ‘Target 1, 2, 3’

Fig. 10.
Fig. 10.

Systematic diagram of computational pickup of totally overlapped objects Following the same procedure of the case of totally non-overlapped objects explained above, elemental images of the 3-D test object shown in Fig. 10 are computationally picked up, and from these picked-up elemental images POIs of the test object are reconstructed by use of the CIIR algorithm. Then, the MBM of each POI is calculated and the results are illustrated in Fig. 11. Figure 11 shows a variation of the MBM along the output plane and we can also see three points of inflection in this figure just like the case of Fig. 8, even though three targets were located to be totally overlapped in the z-direction.

Fig. 11.
Fig. 11.

MBM values of the POIs reconstructed along the output plane (For overlapped objects case).

Fig. 12.
Fig. 12.

Experimental setup for optical pickup of elemental images of real obejcts

Fig. 13.
Fig. 13.

MBM values of the POIs reconstructed along the output plane (For non-overlapped real objects case).

Tables (3)

Tables Icon

Table 1 Three points of inflection for totally non-overlapped objects

Tables Icon

Table 2 Three points of inflection for totally overlapped objects

Tables Icon

Table 3 Two points of inflection for real objects

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I i ( x , y ) = [ G x G y ] = [ x I i ( x , y ) y I i ( x , y ) ]
I i ( x , y ) = G x 2 + G y 2
θ i ( x , y ) = tan 1 ( G y G x )
σ i 2 ( p e ) = 1 m r m l ψ = m l m r I i ( ψ ) ψ 2
β i ( p e ) = η β σ i ( p e ) σ i max + ( 1 η β ) I i ( p e ) I i ( p e ) max
β i ( p e ) = 1 2 ( σ i ( p e ) σ i max + I i ( p e ) I i ( p e ) max )
β MBM = α i × β i mean = M i iN × β i mean

Metrics