Abstract

A simple technique for achieving wavelength tunable and amplitude-equilibrium dual-wavelength fiber laser source based on a dual-pass Raman/Brillouin amplification configuration is proposed and experimentally investigated. A stable room-temperature dual-wavelength lasing oscillations with average channel power of more than 1 mW and signal-to-noise ratio of more than 30 dB were obtained with only 250 mW Raman pump power. The dual-wavelength lasing oscillations with wavelength spacing of 0.076 nm were so stable that the maximum power fluctuations and wavelength shifts over more than 10 minutes of observation were less than 0.5 dB and 0.002 nm, respectively. The dual-wavelength lasing output can also be tuned in a range of ~35 nm from 1545.090 nm to 1580.078 nm with an amplitude-equilibrium of less than a peak power difference of 0.25 dB at the two wavelengths.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, "A novel dual-wavelength DFB fiber laser based on symmetrical FBG structure," IEEE Photon. Technol. Lett. 19, 632-634 (2007)
    [CrossRef]
  2. Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method," IEEE Photon. Technol. Lett. 18, 1964-1966 (2006).
    [CrossRef]
  3. J. Sun, Y. Dai, Y. Zhang, X. Chen, and S. Xie, "Dual-wavelength DFB fiber laser based on unequalized phase shifts," IEEE Photon. Technol. Lett. 18, 2493-2495 (2006).
    [CrossRef]
  4. L. Xia, P. Shum, and T. H. Cheng, "Photonic generation of microwave signals using a dual-transmission-band FBG filter with controllable wavelength spacing," Appl. Phys. B 86, 61-64 (2007).
    [CrossRef]
  5. Y. Shen, X. Zhang, and K. Chen, "All-optical generation of microwave and millimeter wave using a two-frequency Bragg grating-based Brillouin fiber laser," J. Lightwave Technol. 23, 1860-1865 (2005).
    [CrossRef]
  6. G. J. Cowle and D. Yu. Stepanov, "Multiple wavelength generation with Brillouin/erbium fiber lasers," IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
    [CrossRef]
  7. M. P. Fok and C. Shu, "Spacing-adjustable multi-wavelength source from a stimulated Brillouin scattering assisted erbium-doped fiber laser," Opt. Express 14, 2618-2624 (2006).
    [CrossRef] [PubMed]
  8. A. K. Zamzuri, M. I. Md Ali, A. Ahmad, R. Mohamad, and M. A. Mahdi, "Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity," Opt. Lett. 31, 918-920 (2006).
    [CrossRef] [PubMed]
  9. A. K. Zamzuri, M. A. Mahdi, A. Ahmad, M. I. Md Ali, and M. H. Al-Mansoori, "Flat amplitude multiwavelength Brillouin-Raman comb fiber laser in Rayleigh-scattering-enhanced linear cavity," Opt. Express 15, 3000-3005 (2007).
    [CrossRef] [PubMed]
  10. B. Min, P. Kim, and N. Park, "Flat amplitude equal spacing 798-Channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber," IEEE Photon. Technol. Lett. 13, 1352-1354 (2001).
    [CrossRef]
  11. K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, "Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier," Opt. Lett. 27, 155-157 (2002).
    [CrossRef]

2007 (3)

X. Liu, "A novel dual-wavelength DFB fiber laser based on symmetrical FBG structure," IEEE Photon. Technol. Lett. 19, 632-634 (2007)
[CrossRef]

L. Xia, P. Shum, and T. H. Cheng, "Photonic generation of microwave signals using a dual-transmission-band FBG filter with controllable wavelength spacing," Appl. Phys. B 86, 61-64 (2007).
[CrossRef]

A. K. Zamzuri, M. A. Mahdi, A. Ahmad, M. I. Md Ali, and M. H. Al-Mansoori, "Flat amplitude multiwavelength Brillouin-Raman comb fiber laser in Rayleigh-scattering-enhanced linear cavity," Opt. Express 15, 3000-3005 (2007).
[CrossRef] [PubMed]

2006 (4)

M. P. Fok and C. Shu, "Spacing-adjustable multi-wavelength source from a stimulated Brillouin scattering assisted erbium-doped fiber laser," Opt. Express 14, 2618-2624 (2006).
[CrossRef] [PubMed]

A. K. Zamzuri, M. I. Md Ali, A. Ahmad, R. Mohamad, and M. A. Mahdi, "Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity," Opt. Lett. 31, 918-920 (2006).
[CrossRef] [PubMed]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method," IEEE Photon. Technol. Lett. 18, 1964-1966 (2006).
[CrossRef]

J. Sun, Y. Dai, Y. Zhang, X. Chen, and S. Xie, "Dual-wavelength DFB fiber laser based on unequalized phase shifts," IEEE Photon. Technol. Lett. 18, 2493-2495 (2006).
[CrossRef]

2005 (1)

2002 (1)

2001 (1)

B. Min, P. Kim, and N. Park, "Flat amplitude equal spacing 798-Channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber," IEEE Photon. Technol. Lett. 13, 1352-1354 (2001).
[CrossRef]

1996 (1)

G. J. Cowle and D. Yu. Stepanov, "Multiple wavelength generation with Brillouin/erbium fiber lasers," IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
[CrossRef]

Ahmad, A.

Al-Mansoori, M. H.

Chang, J.-S.

Chen, K.

Chen, X.

J. Sun, Y. Dai, Y. Zhang, X. Chen, and S. Xie, "Dual-wavelength DFB fiber laser based on unequalized phase shifts," IEEE Photon. Technol. Lett. 18, 2493-2495 (2006).
[CrossRef]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method," IEEE Photon. Technol. Lett. 18, 1964-1966 (2006).
[CrossRef]

Cheng, T. H.

L. Xia, P. Shum, and T. H. Cheng, "Photonic generation of microwave signals using a dual-transmission-band FBG filter with controllable wavelength spacing," Appl. Phys. B 86, 61-64 (2007).
[CrossRef]

Cowle, G. J.

G. J. Cowle and D. Yu. Stepanov, "Multiple wavelength generation with Brillouin/erbium fiber lasers," IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
[CrossRef]

Dai, Y.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method," IEEE Photon. Technol. Lett. 18, 1964-1966 (2006).
[CrossRef]

J. Sun, Y. Dai, Y. Zhang, X. Chen, and S. Xie, "Dual-wavelength DFB fiber laser based on unequalized phase shifts," IEEE Photon. Technol. Lett. 18, 2493-2495 (2006).
[CrossRef]

Fok, M. P.

Kim, P.

K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, "Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier," Opt. Lett. 27, 155-157 (2002).
[CrossRef]

B. Min, P. Kim, and N. Park, "Flat amplitude equal spacing 798-Channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber," IEEE Photon. Technol. Lett. 13, 1352-1354 (2001).
[CrossRef]

Lee, J.-H.

Liu, X.

X. Liu, "A novel dual-wavelength DFB fiber laser based on symmetrical FBG structure," IEEE Photon. Technol. Lett. 19, 632-634 (2007)
[CrossRef]

Mahdi, M. A.

Md Ali, M. I.

Min, B.

K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, "Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier," Opt. Lett. 27, 155-157 (2002).
[CrossRef]

B. Min, P. Kim, and N. Park, "Flat amplitude equal spacing 798-Channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber," IEEE Photon. Technol. Lett. 13, 1352-1354 (2001).
[CrossRef]

Mohamad, R.

Park, K.-D.

Park, N.

K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, "Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier," Opt. Lett. 27, 155-157 (2002).
[CrossRef]

B. Min, P. Kim, and N. Park, "Flat amplitude equal spacing 798-Channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber," IEEE Photon. Technol. Lett. 13, 1352-1354 (2001).
[CrossRef]

Shen, Y.

Shu, C.

Shum, P.

L. Xia, P. Shum, and T. H. Cheng, "Photonic generation of microwave signals using a dual-transmission-band FBG filter with controllable wavelength spacing," Appl. Phys. B 86, 61-64 (2007).
[CrossRef]

Stepanov, D. Yu.

G. J. Cowle and D. Yu. Stepanov, "Multiple wavelength generation with Brillouin/erbium fiber lasers," IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
[CrossRef]

Sun, J.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method," IEEE Photon. Technol. Lett. 18, 1964-1966 (2006).
[CrossRef]

J. Sun, Y. Dai, Y. Zhang, X. Chen, and S. Xie, "Dual-wavelength DFB fiber laser based on unequalized phase shifts," IEEE Photon. Technol. Lett. 18, 2493-2495 (2006).
[CrossRef]

Xia, L.

L. Xia, P. Shum, and T. H. Cheng, "Photonic generation of microwave signals using a dual-transmission-band FBG filter with controllable wavelength spacing," Appl. Phys. B 86, 61-64 (2007).
[CrossRef]

Xie, S.

J. Sun, Y. Dai, Y. Zhang, X. Chen, and S. Xie, "Dual-wavelength DFB fiber laser based on unequalized phase shifts," IEEE Photon. Technol. Lett. 18, 2493-2495 (2006).
[CrossRef]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method," IEEE Photon. Technol. Lett. 18, 1964-1966 (2006).
[CrossRef]

Yao, Y.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method," IEEE Photon. Technol. Lett. 18, 1964-1966 (2006).
[CrossRef]

Zamzuri, A. K.

Zhang, X.

Zhang, Y.

J. Sun, Y. Dai, Y. Zhang, X. Chen, and S. Xie, "Dual-wavelength DFB fiber laser based on unequalized phase shifts," IEEE Photon. Technol. Lett. 18, 2493-2495 (2006).
[CrossRef]

Appl. Phys. B (1)

L. Xia, P. Shum, and T. H. Cheng, "Photonic generation of microwave signals using a dual-transmission-band FBG filter with controllable wavelength spacing," Appl. Phys. B 86, 61-64 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

X. Liu, "A novel dual-wavelength DFB fiber laser based on symmetrical FBG structure," IEEE Photon. Technol. Lett. 19, 632-634 (2007)
[CrossRef]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method," IEEE Photon. Technol. Lett. 18, 1964-1966 (2006).
[CrossRef]

J. Sun, Y. Dai, Y. Zhang, X. Chen, and S. Xie, "Dual-wavelength DFB fiber laser based on unequalized phase shifts," IEEE Photon. Technol. Lett. 18, 2493-2495 (2006).
[CrossRef]

G. J. Cowle and D. Yu. Stepanov, "Multiple wavelength generation with Brillouin/erbium fiber lasers," IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
[CrossRef]

B. Min, P. Kim, and N. Park, "Flat amplitude equal spacing 798-Channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber," IEEE Photon. Technol. Lett. 13, 1352-1354 (2001).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed dual-wavelength Brillouin/Raman fiber laser source: WDM, wavelength division multiplexer; PC, polarization controller; DCF, dispersioncompensating fiber; HNF, high nonlinear fiber; SFLM, Sagnac fiber loop mirror.

Fig. 2.
Fig. 2.

The left picture is the spectrum of the input Brillouin pump signal; the right picture is the spectrum measured at point A of Fig. 1 with Raman pump power of ~250 mW.

Fig. 3.
Fig. 3.

The spectrum measured at port 3 of the circulator without the SFLM: the left picture is with the LD power off and the right picture is with the LD pump power of ~250 mW.

Fig. 4.
Fig. 4.

Amplitude-equilibrium dual wavelength lasing output spectrum using the proposed double-pass Raman amplification configuration: the left is the single-time scanning spectrum and the right is the 10-time repeated scanning spectra with a time interval of 1 minute.

Fig. 5.
Fig. 5.

Tunable dual-wavelength lasing output spectra with different Raman pump power and the same Brillouin pump power: the upper spectra are with 250 mW LD pump power and the below spectra are with 200 mW LD pump power.

Metrics