Abstract

The magnetic plasmon (MP) modes in periodic chains of metallic trilayer nanostructures (nanosandwich) have been investigated numerically in optical frequency region. By employing the Fourier Transformation (FT) method, the MP modes excited in these chains can be observed directly. We have also used different exciting sources to excite the MP modes in the chain so that we can get clearer physics picture and richer information of the nanosandwich chain. For their long propagating lengths, the nanosandwich chains can well work as subwavelength waveguides to transport electromagnetic field. And one can easily tune the working frequencies and band width of the MP modes by changing the parameters of these chains.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Citrin, "Coherent transport of excitons in quantum-dot chains: role of retardation," Opt. Lett. 20, 901-903 (1995).
    [CrossRef] [PubMed]
  2. M. L. Brogersma, J. H. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000);S. A. Maier, M. L. Brogersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices", Adv. Mater. 13, 1501-1505 (2001);S. A. Maiera and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
    [CrossRef]
  3. W. H. Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004).
    [CrossRef]
  4. A. F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402 (2006).
    [CrossRef]
  5. K. H. Fung, C. T. Chan, "Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis," Opt. Lett. 32, 973-975 (2007).
    [CrossRef] [PubMed]
  6. N. Engheta, "Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials," Science 317, 1698-1702 (2007);M. Silveirinha, N. Engheta, "Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors," Phys. Rev. Lett. 97, 157403 (2006).
    [CrossRef] [PubMed]
  7. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic Plasmon Propagation Along a Chain of Connected Subwavelength Resonators at Infrared Frequencies," Phys. Rev. Lett. 97, 243902 (2006).
    [CrossRef]
  8. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies," Phys. Rev. Lett. 95, 223902 (2005);M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
    [CrossRef] [PubMed]
  9. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
    [CrossRef] [PubMed]
  10. T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures," Appl. Phys. Lett. 90, 25112 (2007);G. Dolling, M. Wegener, A. Schadle, S. Bureger, and S. linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89, 231118 (2006).
  11. T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission," Opt. Express 14, 11155-11163 (2006).
    [CrossRef] [PubMed]
  12. F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, "Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains," Appl. Phys. Lett. 91, 133107 (2007).
    [CrossRef]
  13. J. Zhou, E. N. Economon, T. Koschny and C. M. Soukoulis, "Unifying approach to left-handed material design," Opt. Lett. 31, 3620-3622 (2006).
    [CrossRef] [PubMed]
  14. V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005);H. K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, "A negative permeability material at red light," Opt. express 15, 1076-1083 (2007).
    [CrossRef]
  15. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892-894 (2006);S. Linden, M. Decker, and M. Wegener, "Model System for a One-Dimensional Magnetic Photonic Crystal," Phys. Rev. Lett. 97, 083902 (2006).
    [CrossRef] [PubMed]
  16. D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004);V. Lomakin, M. Lu, and E. Michielssen, "Optical wave properties of nano-particle chains coupled with a metal surface," Opt. Express 15, 11828-11842 (2007).
    [CrossRef]

2007 (4)

N. Engheta, "Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials," Science 317, 1698-1702 (2007);M. Silveirinha, N. Engheta, "Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors," Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef] [PubMed]

N. Engheta, "Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials," Science 317, 1698-1702 (2007);M. Silveirinha, N. Engheta, "Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors," Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef] [PubMed]

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures," Appl. Phys. Lett. 90, 25112 (2007);G. Dolling, M. Wegener, A. Schadle, S. Bureger, and S. linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89, 231118 (2006).

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures," Appl. Phys. Lett. 90, 25112 (2007);G. Dolling, M. Wegener, A. Schadle, S. Bureger, and S. linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89, 231118 (2006).

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, "Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains," Appl. Phys. Lett. 91, 133107 (2007).
[CrossRef]

K. H. Fung, C. T. Chan, "Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis," Opt. Lett. 32, 973-975 (2007).
[CrossRef] [PubMed]

2006 (5)

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission," Opt. Express 14, 11155-11163 (2006).
[CrossRef] [PubMed]

J. Zhou, E. N. Economon, T. Koschny and C. M. Soukoulis, "Unifying approach to left-handed material design," Opt. Lett. 31, 3620-3622 (2006).
[CrossRef] [PubMed]

A. F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892-894 (2006);S. Linden, M. Decker, and M. Wegener, "Model System for a One-Dimensional Magnetic Photonic Crystal," Phys. Rev. Lett. 97, 083902 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892-894 (2006);S. Linden, M. Decker, and M. Wegener, "Model System for a One-Dimensional Magnetic Photonic Crystal," Phys. Rev. Lett. 97, 083902 (2006).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic Plasmon Propagation Along a Chain of Connected Subwavelength Resonators at Infrared Frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

2005 (3)

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies," Phys. Rev. Lett. 95, 223902 (2005);M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies," Phys. Rev. Lett. 95, 223902 (2005);M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005);H. K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, "A negative permeability material at red light," Opt. express 15, 1076-1083 (2007).
[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005);H. K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, "A negative permeability material at red light," Opt. express 15, 1076-1083 (2007).
[CrossRef]

2004 (2)

W. H. Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004).
[CrossRef]

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004);V. Lomakin, M. Lu, and E. Michielssen, "Optical wave properties of nano-particle chains coupled with a metal surface," Opt. Express 15, 11828-11842 (2007).
[CrossRef]

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004);V. Lomakin, M. Lu, and E. Michielssen, "Optical wave properties of nano-particle chains coupled with a metal surface," Opt. Express 15, 11828-11842 (2007).
[CrossRef]

2000 (1)

M. L. Brogersma, J. H. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000);S. A. Maier, M. L. Brogersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices", Adv. Mater. 13, 1501-1505 (2001);S. A. Maiera and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

M. L. Brogersma, J. H. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000);S. A. Maier, M. L. Brogersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices", Adv. Mater. 13, 1501-1505 (2001);S. A. Maiera and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

M. L. Brogersma, J. H. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000);S. A. Maier, M. L. Brogersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices", Adv. Mater. 13, 1501-1505 (2001);S. A. Maiera and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

1995 (1)

Atwater, H. A.

M. L. Brogersma, J. H. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000);S. A. Maier, M. L. Brogersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices", Adv. Mater. 13, 1501-1505 (2001);S. A. Maiera and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

M. L. Brogersma, J. H. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000);S. A. Maier, M. L. Brogersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices", Adv. Mater. 13, 1501-1505 (2001);S. A. Maiera and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

M. L. Brogersma, J. H. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000);S. A. Maier, M. L. Brogersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices", Adv. Mater. 13, 1501-1505 (2001);S. A. Maiera and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Boltasseva, A.

Brogersma, M. L.

M. L. Brogersma, J. H. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000);S. A. Maier, M. L. Brogersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices", Adv. Mater. 13, 1501-1505 (2001);S. A. Maiera and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

M. L. Brogersma, J. H. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000);S. A. Maier, M. L. Brogersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices", Adv. Mater. 13, 1501-1505 (2001);S. A. Maiera and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Bureger, S.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures," Appl. Phys. Lett. 90, 25112 (2007);G. Dolling, M. Wegener, A. Schadle, S. Bureger, and S. linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89, 231118 (2006).

Cai, W.

Chan, C. T.

Chettiar, U. K.

Citrin, D. S.

Decker, M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892-894 (2006);S. Linden, M. Decker, and M. Wegener, "Model System for a One-Dimensional Magnetic Photonic Crystal," Phys. Rev. Lett. 97, 083902 (2006).
[CrossRef] [PubMed]

Dolling, G.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures," Appl. Phys. Lett. 90, 25112 (2007);G. Dolling, M. Wegener, A. Schadle, S. Bureger, and S. linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89, 231118 (2006).

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892-894 (2006);S. Linden, M. Decker, and M. Wegener, "Model System for a One-Dimensional Magnetic Photonic Crystal," Phys. Rev. Lett. 97, 083902 (2006).
[CrossRef] [PubMed]

Dong, Z. G.

Drachev, V. P.

Economou, E. N.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies," Phys. Rev. Lett. 95, 223902 (2005);M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
[CrossRef] [PubMed]

Engheta, N.

N. Engheta, "Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials," Science 317, 1698-1702 (2007);M. Silveirinha, N. Engheta, "Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors," Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef] [PubMed]

N. Engheta, "Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials," Science 317, 1698-1702 (2007);M. Silveirinha, N. Engheta, "Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors," Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef] [PubMed]

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892-894 (2006);S. Linden, M. Decker, and M. Wegener, "Model System for a One-Dimensional Magnetic Photonic Crystal," Phys. Rev. Lett. 97, 083902 (2006).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies," Phys. Rev. Lett. 95, 223902 (2005);M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
[CrossRef] [PubMed]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Ford, G. W.

W. H. Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004).
[CrossRef]

Fung, K. H.

Genov, D. A.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic Plasmon Propagation Along a Chain of Connected Subwavelength Resonators at Infrared Frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004);V. Lomakin, M. Lu, and E. Michielssen, "Optical wave properties of nano-particle chains coupled with a metal surface," Opt. Express 15, 11828-11842 (2007).
[CrossRef]

Hartman, J. H.

M. L. Brogersma, J. H. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000);S. A. Maier, M. L. Brogersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices", Adv. Mater. 13, 1501-1505 (2001);S. A. Maiera and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

J. Zhou,

Kafesaki, M.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies," Phys. Rev. Lett. 95, 223902 (2005);M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
[CrossRef] [PubMed]

Kik, P. G.

M. L. Brogersma, J. H. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000);S. A. Maier, M. L. Brogersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices", Adv. Mater. 13, 1501-1505 (2001);S. A. Maiera and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Kildishev, A. V.

Klein, M. W.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies," Phys. Rev. Lett. 95, 223902 (2005);M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
[CrossRef] [PubMed]

Koenderink, A. F.

A. F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402 (2006).
[CrossRef]

Koschny, Th.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies," Phys. Rev. Lett. 95, 223902 (2005);M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
[CrossRef] [PubMed]

Li, J. Q.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures," Appl. Phys. Lett. 90, 25112 (2007);G. Dolling, M. Wegener, A. Schadle, S. Bureger, and S. linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89, 231118 (2006).

Li, T.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures," Appl. Phys. Lett. 90, 25112 (2007);G. Dolling, M. Wegener, A. Schadle, S. Bureger, and S. linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89, 231118 (2006).

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, "Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains," Appl. Phys. Lett. 91, 133107 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission," Opt. Express 14, 11155-11163 (2006).
[CrossRef] [PubMed]

Linden, S.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892-894 (2006);S. Linden, M. Decker, and M. Wegener, "Model System for a One-Dimensional Magnetic Photonic Crystal," Phys. Rev. Lett. 97, 083902 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892-894 (2006);S. Linden, M. Decker, and M. Wegener, "Model System for a One-Dimensional Magnetic Photonic Crystal," Phys. Rev. Lett. 97, 083902 (2006).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies," Phys. Rev. Lett. 95, 223902 (2005);M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
[CrossRef] [PubMed]

Liu, H.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures," Appl. Phys. Lett. 90, 25112 (2007);G. Dolling, M. Wegener, A. Schadle, S. Bureger, and S. linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89, 231118 (2006).

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, "Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains," Appl. Phys. Lett. 91, 133107 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission," Opt. Express 14, 11155-11163 (2006).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic Plasmon Propagation Along a Chain of Connected Subwavelength Resonators at Infrared Frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Liu, Y. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic Plasmon Propagation Along a Chain of Connected Subwavelength Resonators at Infrared Frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Lomakin, Vitaliy

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004);V. Lomakin, M. Lu, and E. Michielssen, "Optical wave properties of nano-particle chains coupled with a metal surface," Opt. Express 15, 11828-11842 (2007).
[CrossRef]

Lu, Meng

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004);V. Lomakin, M. Lu, and E. Michielssen, "Optical wave properties of nano-particle chains coupled with a metal surface," Opt. Express 15, 11828-11842 (2007).
[CrossRef]

Maier, S. A.

M. L. Brogersma, J. H. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000);S. A. Maier, M. L. Brogersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices", Adv. Mater. 13, 1501-1505 (2001);S. A. Maiera and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Maiera, S. A.

M. L. Brogersma, J. H. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000);S. A. Maier, M. L. Brogersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices", Adv. Mater. 13, 1501-1505 (2001);S. A. Maiera and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Meltzer, S.

M. L. Brogersma, J. H. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000);S. A. Maier, M. L. Brogersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices", Adv. Mater. 13, 1501-1505 (2001);S. A. Maiera and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Michielssen, Eric

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004);V. Lomakin, M. Lu, and E. Michielssen, "Optical wave properties of nano-particle chains coupled with a metal surface," Opt. Express 15, 11828-11842 (2007).
[CrossRef]

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Pendry, J. B.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies," Phys. Rev. Lett. 95, 223902 (2005);M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
[CrossRef] [PubMed]

Pile, D. F. P.

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004);V. Lomakin, M. Lu, and E. Michielssen, "Optical wave properties of nano-particle chains coupled with a metal surface," Opt. Express 15, 11828-11842 (2007).
[CrossRef]

Polman, A.

A. F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402 (2006).
[CrossRef]

Requicha, A. A. G.

M. L. Brogersma, J. H. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000);S. A. Maier, M. L. Brogersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices", Adv. Mater. 13, 1501-1505 (2001);S. A. Maiera and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Sarychev, A. K.

Schadle, A.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures," Appl. Phys. Lett. 90, 25112 (2007);G. Dolling, M. Wegener, A. Schadle, S. Bureger, and S. linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89, 231118 (2006).

Shalaev, V. M.

Silveirinha, M.

N. Engheta, "Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials," Science 317, 1698-1702 (2007);M. Silveirinha, N. Engheta, "Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors," Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef] [PubMed]

Soukoulis, C. M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892-894 (2006);S. Linden, M. Decker, and M. Wegener, "Model System for a One-Dimensional Magnetic Photonic Crystal," Phys. Rev. Lett. 97, 083902 (2006).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies," Phys. Rev. Lett. 95, 223902 (2005);M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies," Phys. Rev. Lett. 95, 223902 (2005);M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
[CrossRef] [PubMed]

Steele, J. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic Plasmon Propagation Along a Chain of Connected Subwavelength Resonators at Infrared Frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Sun, C.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic Plasmon Propagation Along a Chain of Connected Subwavelength Resonators at Infrared Frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Wang, F. M.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures," Appl. Phys. Lett. 90, 25112 (2007);G. Dolling, M. Wegener, A. Schadle, S. Bureger, and S. linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89, 231118 (2006).

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, "Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains," Appl. Phys. Lett. 91, 133107 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission," Opt. Express 14, 11155-11163 (2006).
[CrossRef] [PubMed]

Wang, Q. J.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures," Appl. Phys. Lett. 90, 25112 (2007);G. Dolling, M. Wegener, A. Schadle, S. Bureger, and S. linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89, 231118 (2006).

Wang, S. M.

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, "Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains," Appl. Phys. Lett. 91, 133107 (2007).
[CrossRef]

Weber, W. H.

W. H. Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004).
[CrossRef]

Wegener, M.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures," Appl. Phys. Lett. 90, 25112 (2007);G. Dolling, M. Wegener, A. Schadle, S. Bureger, and S. linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89, 231118 (2006).

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892-894 (2006);S. Linden, M. Decker, and M. Wegener, "Model System for a One-Dimensional Magnetic Photonic Crystal," Phys. Rev. Lett. 97, 083902 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892-894 (2006);S. Linden, M. Decker, and M. Wegener, "Model System for a One-Dimensional Magnetic Photonic Crystal," Phys. Rev. Lett. 97, 083902 (2006).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies," Phys. Rev. Lett. 95, 223902 (2005);M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
[CrossRef] [PubMed]

Wu, D. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic Plasmon Propagation Along a Chain of Connected Subwavelength Resonators at Infrared Frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Yuan, H.

Yuan, H. K.

Zhang, S.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Zhang, X.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic Plasmon Propagation Along a Chain of Connected Subwavelength Resonators at Infrared Frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission," Opt. Express 14, 11155-11163 (2006).
[CrossRef] [PubMed]

Zhou, J.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies," Phys. Rev. Lett. 95, 223902 (2005);M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
[CrossRef] [PubMed]

Zhu, S. N.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures," Appl. Phys. Lett. 90, 25112 (2007);G. Dolling, M. Wegener, A. Schadle, S. Bureger, and S. linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89, 231118 (2006).

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, "Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains," Appl. Phys. Lett. 91, 133107 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission," Opt. Express 14, 11155-11163 (2006).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic Plasmon Propagation Along a Chain of Connected Subwavelength Resonators at Infrared Frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Zhu, Y. Y.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures," Appl. Phys. Lett. 90, 25112 (2007);G. Dolling, M. Wegener, A. Schadle, S. Bureger, and S. linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89, 231118 (2006).

Appl. Phys. Lett. (3)

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures," Appl. Phys. Lett. 90, 25112 (2007);G. Dolling, M. Wegener, A. Schadle, S. Bureger, and S. linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89, 231118 (2006).

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, "Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains," Appl. Phys. Lett. 91, 133107 (2007).
[CrossRef]

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004);V. Lomakin, M. Lu, and E. Michielssen, "Optical wave properties of nano-particle chains coupled with a metal surface," Opt. Express 15, 11828-11842 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. B (3)

M. L. Brogersma, J. H. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000);S. A. Maier, M. L. Brogersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices", Adv. Mater. 13, 1501-1505 (2001);S. A. Maiera and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

W. H. Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004).
[CrossRef]

A. F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic Plasmon Propagation Along a Chain of Connected Subwavelength Resonators at Infrared Frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies," Phys. Rev. Lett. 95, 223902 (2005);M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Science (2)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892-894 (2006);S. Linden, M. Decker, and M. Wegener, "Model System for a One-Dimensional Magnetic Photonic Crystal," Phys. Rev. Lett. 97, 083902 (2006).
[CrossRef] [PubMed]

N. Engheta, "Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials," Science 317, 1698-1702 (2007);M. Silveirinha, N. Engheta, "Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors," Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The geometry of a nanosandwich is shown in (a), with h = 50nm and a = 200nm. The magnetic field at the middle layer of the nanosandwich is presented in (b) at the function of frequency. The magnetic field at z=0 and electric field at y=0 are plotted in (c) and (d).

Fig. 2.
Fig. 2.

The magnetic field in z=0 plane, electric field in y=0 plane and the power flow in x=10µm are presented in (a)–(c), respectively. The red line in (c) corresponds to the power flow at z=0. The FT maps for three different sources are shown in (e), (g) and (i), with the sketches of the systems plotted in (d), (f) and (h).

Fig. 3.
Fig. 3.

The dispersion relation of k and α with (a) a = 200nm, d = 250nm; (b) a = 200nm, d = 225nm; (c) a = 200nm, d = 300nm; (d) a = 150nm, d = 250nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H ( ω , k ) = H ( ω , x ) e ikx dx

Metrics