Abstract

We demonstrate a scattering-type scanning near-field optical microscope (s-SNOM) with broadband THz illumination. A cantilevered W tip is used in tapping AFM mode. The direct scattering spectrum is obtained and optimized by asynchronous optical sampling (ASOPS), while near-field scattering is observed by using a space-domain delay stage and harmonic demodulation of the detector signal. True near-field interaction is determined from the approach behavior of the tip to Au samples. Scattering spectra of differently doped Si are presented.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kuzmany, Solid-State Spectroscopy (Springer, Berlin, 1998).
  2. T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electronic faults in integrated circuits,” Opt. Lett. 28, 2058–2060 (2003).
    [Crossref] [PubMed]
  3. R. Lecaque, S. Gresillon, N. Barbey, R. Peretti, J. C. Rivoal, and A. C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262, 125–127 (2006).
    [Crossref]
  4. B. Gompf, N. Gebert, H. Heer, and M. Dressel, “Polarization contrast terahertz-near-field imaging of anisotropic conductors,” Appl. Phys. Lett. 90, 82104 (2007).
    [Crossref]
  5. R. Merz, F. Keilmann, R. J. Haug, and K. Ploog, “Nonequilibrium edge-state transport resolved by far-infrared microscopy,” Phys. Rev. Lett. 70, 651–653 (1993).
    [Crossref] [PubMed]
  6. F. Keilmann, “FIR Microscopy,” Infrared Phys. and Technol. 36, 217–224 (1994).
    [Crossref]
  7. S. Hunsche and M. Koch, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
    [Crossref]
  8. U. Schade and K. Holldack, “THz near-field imaging employing synchrotron radiation,” Appl. Phys. Lett. 84, 1422–1424 (2004).
    [Crossref]
  9. B. Knoll and F. Keilmann, “Electromagnetic fields in the cutoff regime of tapered metallic waveguides,” Opt. Commun. 162, 177–181 (1999).
    [Crossref]
  10. F. Keilmann, “Scanning tip for optical radiation,” in U.S. Patent 4,994,818 (1988),
  11. M. Fee, S. Chu, and T. W. Hänsch, “Scanning electromagnetic transmission line microscope with sub-wavelength resolution,” Opt. Commun. 69, 219–224 (1989).
    [Crossref]
  12. F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc. London, Ser. A 362, 787–805 (2004).
    [Crossref]
  13. B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, “Contrast of microwave near-field microscopy,” Appl. Phys. Lett. 70, 2667–2669 (1997).
    [Crossref]
  14. S. M. Anlage, D. E. Steinhauer, B. J. Feenstra, C. P. Vlahacos, and F. C. Wellstood, “Near-field microwave microscopy of materials properties,” in Microwave Superconductivity, H. Weinstock and M. Nisenoff, eds. (Kluwer, Amsterdam, 2001), pp. 239–269.
  15. F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
    [Crossref]
  16. F. Keilmann, D. W. v. d. Weide, T. Eickelkamp, R. Merz, and D. Stöckle, “Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope,” Opt. Commun. 129, 15–18 (1996).
    [Crossref]
  17. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
    [Crossref]
  18. R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
    [Crossref] [PubMed]
  19. R. Hillenbrand and F. Keilmann, “Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by back-scattering near-field optical microscopy,” Appl. Phys. Lett. 80, 25–27 (2002).
    [Crossref]
  20. B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
    [Crossref]
  21. A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19, 2209–2213 (2007).
    [Crossref]
  22. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
    [Crossref] [PubMed]
  23. T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical resonance tuning and phase effects in optical near-field interaction,” Nano Lett. 4, 1669–1672 (2004).
    [Crossref]
  24. S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and H. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90, 143101-143101–143101-143103 (2007).
    [Crossref]
  25. T. Taubner, R. Hillenbrand, and F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85, 5064–5066 (2004).
    [Crossref]
  26. M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6, 1307–1310 (2006).
    [Crossref] [PubMed]
  27. N. C. J. v. d. Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81, 1558–1560 (2002).
    [Crossref]
  28. P. C. M. Planken, C. E. W. M. Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems,” Semiconduct. Sci. Technol. 20, 121–127 (2005).
    [Crossref]
  29. H. T. Chen, R. Kersting, and G. C. Cho, “THz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).
    [Crossref]
  30. F. F. Buersgens, H. T. Chen, and R. Kersting, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett. 88, 112115 (2006).
    [Crossref]
  31. P. A. Elzinga, R. J. Kneisler, F. E. Lytle, J. Y., G. B. King, and N. M. Lauredeau, “Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling,” Appl. Opt. 26, 4303–4309 (1987).
    [Crossref] [PubMed]
  32. T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87, 61101-61101–61101-61103 (2005).
    [Crossref]
  33. A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, and M. Helm, “High-resolution THz spectrometer with kHz scan rates,” Opt. Express 14, 430–437 (2006).
    [Crossref] [PubMed]
  34. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88, 241104-241101–241104-241103 (2006).
    [Crossref]
  35. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronuous optical sampling,” Rev. Sci. Instrum. 78, 351071–351078 (2007).
    [Crossref]
  36. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and H. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114-121111–121114-121113 (2005).
    [Crossref]
  37. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
    [Crossref]
  38. L. M. Matarrese and K. M. Evenson, “Improved coupling to infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett. 17, 8–10 (1970).
    [Crossref]
  39. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
    [Crossref]
  40. M. Brehm, A. Schliesser, and F. Keilmann, “Spectroscopic near-field microscopy using frequency combs in the mid-infrared,” Opt. Express 14, 11222–11233 (2006).
    [Crossref] [PubMed]
  41. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15, 8550–8565 (2007).
    [Crossref] [PubMed]
  42. M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: tip-sample coupling in elastic light scattering,” Appl. Phys. Lett. 83, 5089–5091 (2003).
    [Crossref]
  43. M. Brehm, “Infrarot-Mikrospektroskopie mit einem Nahfeldmikroskop,” Dissertation, Fakultät für Physik, Technische Universität, München, p. 128 (2006).
  44. N. Ocelic and R. Hillenbrand, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nature Mater. 3, 606–609 (2004).
    [Crossref]
  45. F. Keilmann and R. Hillenbrand, “Mirror optic for near-field optical measurements,” patent DE 102006002461 filed 18.1.2006 (US filed 16.1.2007, 2006).

2007 (6)

B. Gompf, N. Gebert, H. Heer, and M. Dressel, “Polarization contrast terahertz-near-field imaging of anisotropic conductors,” Appl. Phys. Lett. 90, 82104 (2007).
[Crossref]

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19, 2209–2213 (2007).
[Crossref]

S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and H. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90, 143101-143101–143101-143103 (2007).
[Crossref]

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronuous optical sampling,” Rev. Sci. Instrum. 78, 351071–351078 (2007).
[Crossref]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15, 8550–8565 (2007).
[Crossref] [PubMed]

2006 (6)

A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, and M. Helm, “High-resolution THz spectrometer with kHz scan rates,” Opt. Express 14, 430–437 (2006).
[Crossref] [PubMed]

M. Brehm, A. Schliesser, and F. Keilmann, “Spectroscopic near-field microscopy using frequency combs in the mid-infrared,” Opt. Express 14, 11222–11233 (2006).
[Crossref] [PubMed]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6, 1307–1310 (2006).
[Crossref] [PubMed]

F. F. Buersgens, H. T. Chen, and R. Kersting, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett. 88, 112115 (2006).
[Crossref]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88, 241104-241101–241104-241103 (2006).
[Crossref]

R. Lecaque, S. Gresillon, N. Barbey, R. Peretti, J. C. Rivoal, and A. C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262, 125–127 (2006).
[Crossref]

2005 (3)

P. C. M. Planken, C. E. W. M. Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems,” Semiconduct. Sci. Technol. 20, 121–127 (2005).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and H. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114-121111–121114-121113 (2005).
[Crossref]

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87, 61101-61101–61101-61103 (2005).
[Crossref]

2004 (5)

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical resonance tuning and phase effects in optical near-field interaction,” Nano Lett. 4, 1669–1672 (2004).
[Crossref]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85, 5064–5066 (2004).
[Crossref]

U. Schade and K. Holldack, “THz near-field imaging employing synchrotron radiation,” Appl. Phys. Lett. 84, 1422–1424 (2004).
[Crossref]

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc. London, Ser. A 362, 787–805 (2004).
[Crossref]

N. Ocelic and R. Hillenbrand, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nature Mater. 3, 606–609 (2004).
[Crossref]

2003 (3)

T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electronic faults in integrated circuits,” Opt. Lett. 28, 2058–2060 (2003).
[Crossref] [PubMed]

H. T. Chen, R. Kersting, and G. C. Cho, “THz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).
[Crossref]

M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: tip-sample coupling in elastic light scattering,” Appl. Phys. Lett. 83, 5089–5091 (2003).
[Crossref]

2002 (3)

N. C. J. v. d. Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81, 1558–1560 (2002).
[Crossref]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

R. Hillenbrand and F. Keilmann, “Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by back-scattering near-field optical microscopy,” Appl. Phys. Lett. 80, 25–27 (2002).
[Crossref]

2000 (3)

B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
[Crossref]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[Crossref] [PubMed]

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
[Crossref]

1999 (2)

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
[Crossref]

B. Knoll and F. Keilmann, “Electromagnetic fields in the cutoff regime of tapered metallic waveguides,” Opt. Commun. 162, 177–181 (1999).
[Crossref]

1998 (1)

S. Hunsche and M. Koch, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[Crossref]

1997 (1)

B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, “Contrast of microwave near-field microscopy,” Appl. Phys. Lett. 70, 2667–2669 (1997).
[Crossref]

1996 (1)

F. Keilmann, D. W. v. d. Weide, T. Eickelkamp, R. Merz, and D. Stöckle, “Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope,” Opt. Commun. 129, 15–18 (1996).
[Crossref]

1994 (2)

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[Crossref]

F. Keilmann, “FIR Microscopy,” Infrared Phys. and Technol. 36, 217–224 (1994).
[Crossref]

1993 (1)

R. Merz, F. Keilmann, R. J. Haug, and K. Ploog, “Nonequilibrium edge-state transport resolved by far-infrared microscopy,” Phys. Rev. Lett. 70, 651–653 (1993).
[Crossref] [PubMed]

1989 (1)

M. Fee, S. Chu, and T. W. Hänsch, “Scanning electromagnetic transmission line microscope with sub-wavelength resolution,” Opt. Commun. 69, 219–224 (1989).
[Crossref]

1987 (1)

1970 (1)

L. M. Matarrese and K. M. Evenson, “Improved coupling to infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett. 17, 8–10 (1970).
[Crossref]

Anlage, S. M.

S. M. Anlage, D. E. Steinhauer, B. J. Feenstra, C. P. Vlahacos, and F. C. Wellstood, “Near-field microwave microscopy of materials properties,” in Microwave Superconductivity, H. Weinstock and M. Nisenoff, eds. (Kluwer, Amsterdam, 2001), pp. 239–269.

Araki, T.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88, 241104-241101–241104-241103 (2006).
[Crossref]

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87, 61101-61101–61101-61103 (2005).
[Crossref]

Barbey, N.

R. Lecaque, S. Gresillon, N. Barbey, R. Peretti, J. C. Rivoal, and A. C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262, 125–127 (2006).
[Crossref]

Bartels, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronuous optical sampling,” Rev. Sci. Instrum. 78, 351071–351078 (2007).
[Crossref]

A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, and M. Helm, “High-resolution THz spectrometer with kHz scan rates,” Opt. Express 14, 430–437 (2006).
[Crossref] [PubMed]

Boccara, A. C.

R. Lecaque, S. Gresillon, N. Barbey, R. Peretti, J. C. Rivoal, and A. C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262, 125–127 (2006).
[Crossref]

Brehm, M.

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6, 1307–1310 (2006).
[Crossref] [PubMed]

M. Brehm, A. Schliesser, and F. Keilmann, “Spectroscopic near-field microscopy using frequency combs in the mid-infrared,” Opt. Express 14, 11222–11233 (2006).
[Crossref] [PubMed]

M. Brehm, “Infrarot-Mikrospektroskopie mit einem Nahfeldmikroskop,” Dissertation, Fakultät für Physik, Technische Universität, München, p. 128 (2006).

Buersgens, F. F.

F. F. Buersgens, H. T. Chen, and R. Kersting, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett. 88, 112115 (2006).
[Crossref]

Cerna, R.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronuous optical sampling,” Rev. Sci. Instrum. 78, 351071–351078 (2007).
[Crossref]

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

Chen, H. T.

F. F. Buersgens, H. T. Chen, and R. Kersting, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett. 88, 112115 (2006).
[Crossref]

H. T. Chen, R. Kersting, and G. C. Cho, “THz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).
[Crossref]

Cho, G. C.

H. T. Chen, R. Kersting, and G. C. Cho, “THz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).
[Crossref]

Chu, S.

M. Fee, S. Chu, and T. W. Hänsch, “Scanning electromagnetic transmission line microscope with sub-wavelength resolution,” Opt. Commun. 69, 219–224 (1989).
[Crossref]

Cvitkovic, A.

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

Dekorsy, T.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronuous optical sampling,” Rev. Sci. Instrum. 78, 351071–351078 (2007).
[Crossref]

A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, and M. Helm, “High-resolution THz spectrometer with kHz scan rates,” Opt. Express 14, 430–437 (2006).
[Crossref] [PubMed]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and H. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114-121111–121114-121113 (2005).
[Crossref]

Dressel, M.

B. Gompf, N. Gebert, H. Heer, and M. Dressel, “Polarization contrast terahertz-near-field imaging of anisotropic conductors,” Appl. Phys. Lett. 90, 82104 (2007).
[Crossref]

Dreyhaupt, A.

A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, and M. Helm, “High-resolution THz spectrometer with kHz scan rates,” Opt. Express 14, 430–437 (2006).
[Crossref] [PubMed]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and H. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114-121111–121114-121113 (2005).
[Crossref]

Eickelkamp, T.

F. Keilmann, D. W. v. d. Weide, T. Eickelkamp, R. Merz, and D. Stöckle, “Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope,” Opt. Commun. 129, 15–18 (1996).
[Crossref]

Elzinga, P. A.

Eng, L. M.

S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and H. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90, 143101-143101–143101-143103 (2007).
[Crossref]

Evenson, K. M.

L. M. Matarrese and K. M. Evenson, “Improved coupling to infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett. 17, 8–10 (1970).
[Crossref]

Fee, M.

M. Fee, S. Chu, and T. W. Hänsch, “Scanning electromagnetic transmission line microscope with sub-wavelength resolution,” Opt. Commun. 69, 219–224 (1989).
[Crossref]

Feenstra, B. J.

S. M. Anlage, D. E. Steinhauer, B. J. Feenstra, C. P. Vlahacos, and F. C. Wellstood, “Near-field microwave microscopy of materials properties,” in Microwave Superconductivity, H. Weinstock and M. Nisenoff, eds. (Kluwer, Amsterdam, 2001), pp. 239–269.

Gebert, N.

B. Gompf, N. Gebert, H. Heer, and M. Dressel, “Polarization contrast terahertz-near-field imaging of anisotropic conductors,” Appl. Phys. Lett. 90, 82104 (2007).
[Crossref]

Gompf, B.

B. Gompf, N. Gebert, H. Heer, and M. Dressel, “Polarization contrast terahertz-near-field imaging of anisotropic conductors,” Appl. Phys. Lett. 90, 82104 (2007).
[Crossref]

Grafström, S.

S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and H. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90, 143101-143101–143101-143103 (2007).
[Crossref]

Gresillon, S.

R. Lecaque, S. Gresillon, N. Barbey, R. Peretti, J. C. Rivoal, and A. C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262, 125–127 (2006).
[Crossref]

Guckenberger, R.

B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, “Contrast of microwave near-field microscopy,” Appl. Phys. Lett. 70, 2667–2669 (1997).
[Crossref]

Hänsch, T. W.

M. Fee, S. Chu, and T. W. Hänsch, “Scanning electromagnetic transmission line microscope with sub-wavelength resolution,” Opt. Commun. 69, 219–224 (1989).
[Crossref]

Haug, R. J.

R. Merz, F. Keilmann, R. J. Haug, and K. Ploog, “Nonequilibrium edge-state transport resolved by far-infrared microscopy,” Phys. Rev. Lett. 70, 651–653 (1993).
[Crossref] [PubMed]

Heer, H.

B. Gompf, N. Gebert, H. Heer, and M. Dressel, “Polarization contrast terahertz-near-field imaging of anisotropic conductors,” Appl. Phys. Lett. 90, 82104 (2007).
[Crossref]

Helm, H.

S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and H. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90, 143101-143101–143101-143103 (2007).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and H. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114-121111–121114-121113 (2005).
[Crossref]

Helm, M.

Hillenbrand, R.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15, 8550–8565 (2007).
[Crossref] [PubMed]

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19, 2209–2213 (2007).
[Crossref]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6, 1307–1310 (2006).
[Crossref] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85, 5064–5066 (2004).
[Crossref]

N. Ocelic and R. Hillenbrand, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nature Mater. 3, 606–609 (2004).
[Crossref]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical resonance tuning and phase effects in optical near-field interaction,” Nano Lett. 4, 1669–1672 (2004).
[Crossref]

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc. London, Ser. A 362, 787–805 (2004).
[Crossref]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

R. Hillenbrand and F. Keilmann, “Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by back-scattering near-field optical microscopy,” Appl. Phys. Lett. 80, 25–27 (2002).
[Crossref]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[Crossref] [PubMed]

F. Keilmann and R. Hillenbrand, “Mirror optic for near-field optical measurements,” patent DE 102006002461 filed 18.1.2006 (US filed 16.1.2007, 2006).

Holldack, K.

U. Schade and K. Holldack, “THz near-field imaging employing synchrotron radiation,” Appl. Phys. Lett. 84, 1422–1424 (2004).
[Crossref]

Huber, A. J.

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19, 2209–2213 (2007).
[Crossref]

Hudert, F.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronuous optical sampling,” Rev. Sci. Instrum. 78, 351071–351078 (2007).
[Crossref]

Hunsche, S.

S. Hunsche and M. Koch, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[Crossref]

J. Y.,

Janke, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronuous optical sampling,” Rev. Sci. Instrum. 78, 351071–351078 (2007).
[Crossref]

A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, and M. Helm, “High-resolution THz spectrometer with kHz scan rates,” Opt. Express 14, 430–437 (2006).
[Crossref] [PubMed]

Kabetani, Y.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88, 241104-241101–241104-241103 (2006).
[Crossref]

Kawase, K.

Kazantsev, D.

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19, 2209–2213 (2007).
[Crossref]

Keilmann, F.

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19, 2209–2213 (2007).
[Crossref]

M. Brehm, A. Schliesser, and F. Keilmann, “Spectroscopic near-field microscopy using frequency combs in the mid-infrared,” Opt. Express 14, 11222–11233 (2006).
[Crossref] [PubMed]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6, 1307–1310 (2006).
[Crossref] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85, 5064–5066 (2004).
[Crossref]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical resonance tuning and phase effects in optical near-field interaction,” Nano Lett. 4, 1669–1672 (2004).
[Crossref]

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc. London, Ser. A 362, 787–805 (2004).
[Crossref]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

R. Hillenbrand and F. Keilmann, “Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by back-scattering near-field optical microscopy,” Appl. Phys. Lett. 80, 25–27 (2002).
[Crossref]

B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
[Crossref]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[Crossref] [PubMed]

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
[Crossref]

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
[Crossref]

B. Knoll and F. Keilmann, “Electromagnetic fields in the cutoff regime of tapered metallic waveguides,” Opt. Commun. 162, 177–181 (1999).
[Crossref]

B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, “Contrast of microwave near-field microscopy,” Appl. Phys. Lett. 70, 2667–2669 (1997).
[Crossref]

F. Keilmann, D. W. v. d. Weide, T. Eickelkamp, R. Merz, and D. Stöckle, “Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope,” Opt. Commun. 129, 15–18 (1996).
[Crossref]

F. Keilmann, “FIR Microscopy,” Infrared Phys. and Technol. 36, 217–224 (1994).
[Crossref]

R. Merz, F. Keilmann, R. J. Haug, and K. Ploog, “Nonequilibrium edge-state transport resolved by far-infrared microscopy,” Phys. Rev. Lett. 70, 651–653 (1993).
[Crossref] [PubMed]

F. Keilmann, “Scanning tip for optical radiation,” in U.S. Patent 4,994,818 (1988),

F. Keilmann and R. Hillenbrand, “Mirror optic for near-field optical measurements,” patent DE 102006002461 filed 18.1.2006 (US filed 16.1.2007, 2006).

Kersting, R.

F. F. Buersgens, H. T. Chen, and R. Kersting, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett. 88, 112115 (2006).
[Crossref]

H. T. Chen, R. Kersting, and G. C. Cho, “THz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).
[Crossref]

King, G. B.

Kistner, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronuous optical sampling,” Rev. Sci. Instrum. 78, 351071–351078 (2007).
[Crossref]

Kiwa, T.

Kneisler, R. J.

Knoll, B.

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
[Crossref]

B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
[Crossref]

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
[Crossref]

B. Knoll and F. Keilmann, “Electromagnetic fields in the cutoff regime of tapered metallic waveguides,” Opt. Commun. 162, 177–181 (1999).
[Crossref]

B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, “Contrast of microwave near-field microscopy,” Appl. Phys. Lett. 70, 2667–2669 (1997).
[Crossref]

Koch, M.

S. Hunsche and M. Koch, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[Crossref]

Kramer, A.

B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, “Contrast of microwave near-field microscopy,” Appl. Phys. Lett. 70, 2667–2669 (1997).
[Crossref]

Kuzmany, H.

H. Kuzmany, Solid-State Spectroscopy (Springer, Berlin, 1998).

Lauredeau, N. M.

Lecaque, R.

R. Lecaque, S. Gresillon, N. Barbey, R. Peretti, J. C. Rivoal, and A. C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262, 125–127 (2006).
[Crossref]

Lienau, C.

M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: tip-sample coupling in elastic light scattering,” Appl. Phys. Lett. 83, 5089–5091 (2003).
[Crossref]

Lytle, F. E.

Matarrese, L. M.

L. M. Matarrese and K. M. Evenson, “Improved coupling to infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett. 17, 8–10 (1970).
[Crossref]

Merz, R.

F. Keilmann, D. W. v. d. Weide, T. Eickelkamp, R. Merz, and D. Stöckle, “Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope,” Opt. Commun. 129, 15–18 (1996).
[Crossref]

R. Merz, F. Keilmann, R. J. Haug, and K. Ploog, “Nonequilibrium edge-state transport resolved by far-infrared microscopy,” Phys. Rev. Lett. 70, 651–653 (1993).
[Crossref] [PubMed]

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

O’Boyle, M. P.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[Crossref]

Ocelic, N.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15, 8550–8565 (2007).
[Crossref] [PubMed]

N. Ocelic and R. Hillenbrand, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nature Mater. 3, 606–609 (2004).
[Crossref]

Peretti, R.

R. Lecaque, S. Gresillon, N. Barbey, R. Peretti, J. C. Rivoal, and A. C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262, 125–127 (2006).
[Crossref]

Planken, P. C. M.

P. C. M. Planken, C. E. W. M. Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems,” Semiconduct. Sci. Technol. 20, 121–127 (2005).
[Crossref]

N. C. J. v. d. Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81, 1558–1560 (2002).
[Crossref]

Ploog, K.

R. Merz, F. Keilmann, R. J. Haug, and K. Ploog, “Nonequilibrium edge-state transport resolved by far-infrared microscopy,” Phys. Rev. Lett. 70, 651–653 (1993).
[Crossref] [PubMed]

Raschke, M. B.

M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: tip-sample coupling in elastic light scattering,” Appl. Phys. Lett. 83, 5089–5091 (2003).
[Crossref]

Rijmenam, C. E. W. M.

P. C. M. Planken, C. E. W. M. Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems,” Semiconduct. Sci. Technol. 20, 121–127 (2005).
[Crossref]

Rivoal, J. C.

R. Lecaque, S. Gresillon, N. Barbey, R. Peretti, J. C. Rivoal, and A. C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262, 125–127 (2006).
[Crossref]

Saneyoshi, E.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88, 241104-241101–241104-241103 (2006).
[Crossref]

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87, 61101-61101–61101-61103 (2005).
[Crossref]

Schade, U.

U. Schade and K. Holldack, “THz near-field imaging employing synchrotron radiation,” Appl. Phys. Lett. 84, 1422–1424 (2004).
[Crossref]

Schliesser, A.

Schneider, S.

S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and H. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90, 143101-143101–143101-143103 (2007).
[Crossref]

Schouten, R. N.

P. C. M. Planken, C. E. W. M. Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems,” Semiconduct. Sci. Technol. 20, 121–127 (2005).
[Crossref]

Seidel, J.

S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and H. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90, 143101-143101–143101-143103 (2007).
[Crossref]

Stehr, D.

S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and H. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90, 143101-143101–143101-143103 (2007).
[Crossref]

Steinhauer, D. E.

S. M. Anlage, D. E. Steinhauer, B. J. Feenstra, C. P. Vlahacos, and F. C. Wellstood, “Near-field microwave microscopy of materials properties,” in Microwave Superconductivity, H. Weinstock and M. Nisenoff, eds. (Kluwer, Amsterdam, 2001), pp. 239–269.

Stöckle, D.

F. Keilmann, D. W. v. d. Weide, T. Eickelkamp, R. Merz, and D. Stöckle, “Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope,” Opt. Commun. 129, 15–18 (1996).
[Crossref]

Taubner, T.

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6, 1307–1310 (2006).
[Crossref] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85, 5064–5066 (2004).
[Crossref]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical resonance tuning and phase effects in optical near-field interaction,” Nano Lett. 4, 1669–1672 (2004).
[Crossref]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

Thoma, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronuous optical sampling,” Rev. Sci. Instrum. 78, 351071–351078 (2007).
[Crossref]

A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, and M. Helm, “High-resolution THz spectrometer with kHz scan rates,” Opt. Express 14, 430–437 (2006).
[Crossref] [PubMed]

Tonouchi, M.

Valk, N. C. J. v. d.

N. C. J. v. d. Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81, 1558–1560 (2002).
[Crossref]

Vlahacos, C. P.

S. M. Anlage, D. E. Steinhauer, B. J. Feenstra, C. P. Vlahacos, and F. C. Wellstood, “Near-field microwave microscopy of materials properties,” in Microwave Superconductivity, H. Weinstock and M. Nisenoff, eds. (Kluwer, Amsterdam, 2001), pp. 239–269.

Weide, D. W. v. d.

F. Keilmann, D. W. v. d. Weide, T. Eickelkamp, R. Merz, and D. Stöckle, “Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope,” Opt. Commun. 129, 15–18 (1996).
[Crossref]

Wellstood, F. C.

S. M. Anlage, D. E. Steinhauer, B. J. Feenstra, C. P. Vlahacos, and F. C. Wellstood, “Near-field microwave microscopy of materials properties,” in Microwave Superconductivity, H. Weinstock and M. Nisenoff, eds. (Kluwer, Amsterdam, 2001), pp. 239–269.

Wickramasinghe, H. K.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[Crossref]

Winnerl, S.

S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and H. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90, 143101-143101–143101-143103 (2007).
[Crossref]

A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, and M. Helm, “High-resolution THz spectrometer with kHz scan rates,” Opt. Express 14, 430–437 (2006).
[Crossref] [PubMed]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and H. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114-121111–121114-121113 (2005).
[Crossref]

Wittborn, J.

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19, 2209–2213 (2007).
[Crossref]

Yamashita, M.

Yasui, T.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88, 241104-241101–241104-241103 (2006).
[Crossref]

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87, 61101-61101–61101-61103 (2005).
[Crossref]

Yokoyama, S.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88, 241104-241101–241104-241103 (2006).
[Crossref]

Zenhausern, F.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[Crossref]

Adv. Mater. (1)

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19, 2209–2213 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (16)

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87, 61101-61101–61101-61103 (2005).
[Crossref]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88, 241104-241101–241104-241103 (2006).
[Crossref]

N. C. J. v. d. Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81, 1558–1560 (2002).
[Crossref]

H. T. Chen, R. Kersting, and G. C. Cho, “THz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).
[Crossref]

F. F. Buersgens, H. T. Chen, and R. Kersting, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett. 88, 112115 (2006).
[Crossref]

R. Hillenbrand and F. Keilmann, “Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by back-scattering near-field optical microscopy,” Appl. Phys. Lett. 80, 25–27 (2002).
[Crossref]

B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
[Crossref]

S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and H. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90, 143101-143101–143101-143103 (2007).
[Crossref]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85, 5064–5066 (2004).
[Crossref]

B. Gompf, N. Gebert, H. Heer, and M. Dressel, “Polarization contrast terahertz-near-field imaging of anisotropic conductors,” Appl. Phys. Lett. 90, 82104 (2007).
[Crossref]

U. Schade and K. Holldack, “THz near-field imaging employing synchrotron radiation,” Appl. Phys. Lett. 84, 1422–1424 (2004).
[Crossref]

B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, “Contrast of microwave near-field microscopy,” Appl. Phys. Lett. 70, 2667–2669 (1997).
[Crossref]

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[Crossref]

L. M. Matarrese and K. M. Evenson, “Improved coupling to infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett. 17, 8–10 (1970).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and H. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114-121111–121114-121113 (2005).
[Crossref]

M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: tip-sample coupling in elastic light scattering,” Appl. Phys. Lett. 83, 5089–5091 (2003).
[Crossref]

Infrared Phys. and Technol. (1)

F. Keilmann, “FIR Microscopy,” Infrared Phys. and Technol. 36, 217–224 (1994).
[Crossref]

Nano Lett. (2)

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6, 1307–1310 (2006).
[Crossref] [PubMed]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical resonance tuning and phase effects in optical near-field interaction,” Nano Lett. 4, 1669–1672 (2004).
[Crossref]

Nature (2)

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
[Crossref]

Nature Mater. (1)

N. Ocelic and R. Hillenbrand, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nature Mater. 3, 606–609 (2004).
[Crossref]

Opt. Commun. (6)

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
[Crossref]

F. Keilmann, D. W. v. d. Weide, T. Eickelkamp, R. Merz, and D. Stöckle, “Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope,” Opt. Commun. 129, 15–18 (1996).
[Crossref]

M. Fee, S. Chu, and T. W. Hänsch, “Scanning electromagnetic transmission line microscope with sub-wavelength resolution,” Opt. Commun. 69, 219–224 (1989).
[Crossref]

S. Hunsche and M. Koch, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[Crossref]

B. Knoll and F. Keilmann, “Electromagnetic fields in the cutoff regime of tapered metallic waveguides,” Opt. Commun. 162, 177–181 (1999).
[Crossref]

R. Lecaque, S. Gresillon, N. Barbey, R. Peretti, J. C. Rivoal, and A. C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262, 125–127 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Philos. Trans. R. Soc. London, Ser. A (1)

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc. London, Ser. A 362, 787–805 (2004).
[Crossref]

Phys. Rev. Lett. (2)

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[Crossref] [PubMed]

R. Merz, F. Keilmann, R. J. Haug, and K. Ploog, “Nonequilibrium edge-state transport resolved by far-infrared microscopy,” Phys. Rev. Lett. 70, 651–653 (1993).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

Rev. Sci. Instrum. (1)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronuous optical sampling,” Rev. Sci. Instrum. 78, 351071–351078 (2007).
[Crossref]

Semiconduct. Sci. Technol. (1)

P. C. M. Planken, C. E. W. M. Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems,” Semiconduct. Sci. Technol. 20, 121–127 (2005).
[Crossref]

Other (5)

H. Kuzmany, Solid-State Spectroscopy (Springer, Berlin, 1998).

F. Keilmann, “Scanning tip for optical radiation,” in U.S. Patent 4,994,818 (1988),

S. M. Anlage, D. E. Steinhauer, B. J. Feenstra, C. P. Vlahacos, and F. C. Wellstood, “Near-field microwave microscopy of materials properties,” in Microwave Superconductivity, H. Weinstock and M. Nisenoff, eds. (Kluwer, Amsterdam, 2001), pp. 239–269.

M. Brehm, “Infrarot-Mikrospektroskopie mit einem Nahfeldmikroskop,” Dissertation, Fakultät für Physik, Technische Universität, München, p. 128 (2006).

F. Keilmann and R. Hillenbrand, “Mirror optic for near-field optical measurements,” patent DE 102006002461 filed 18.1.2006 (US filed 16.1.2007, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optical layout of spectroscopic THz s-SNOM. A common paraboloid mirror m1 serves for both focusing to the tip and for recollimating THz radiation scattered by about 90° sideways.[45] The THz beam is generated by driving a GaAs emitter with Ti:sapphire laser pulses, and is detected by a standard e.o. setup. A second Ti:sapphire laser (dashed frame) serves to provide a purely time-domain delay, resulting in rapid sequence of spectra. This ASOPS mode is used for s-SNOM alignment. THz s-SNOM operation proceeds by using space-domain delay, involving the delay stage shown but not the second laser.

Fig. 2.
Fig. 2.

SEM image of hand-made cantilevered s-SNOM probe for tapping-mode operation, made of 65 µm W wire by bending and electrochemically etching to a tip radius below 500 nm.

Fig. 3.
Fig. 3.

Experimental THz s-SNOM spectra of Au using the space-domain delay method (no averaging). The input spectrum is obtained by placing a mirror pair before the focusing paraboloid. This and the direct scattering spectra are taken at 5x speed. The first (s1) and second-order demodulated scattering spectra (s2) are shown. In all spectra (including those in Figs. 4,5) the data points are from measurement, the curves are obtained by weighted smoothing.

Fig. 4.
Fig. 4.

Approach curves of demodulated THz signals using a W tip (radius 300 nm) on a flat Au sample (three curves averaged). The tapping amplitude reduces when contact is made. The THz field amplitude decays at a characteristic distance from the sample, giving the range of near-field interaction which is connected to the attainable spatial resolution.

Fig. 5.
Fig. 5.

Experimental THz s-SNOM amplitude-contrast spectra (s2) of doped Si, normalized to Au (experimental dots; the dashed curves are guides to the eye).

Fig. 6.
Fig. 6.

Theoretical THz s-SNOM amplitude-contrast spectra of doped Si normalized to Au, calculated by the point-dipole/mirror-dipole model for different free electron densities ne.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

se i φ ( 1 + r ) 2 α ( 1 α β ( 16 π ( a + z ) 3 ) ) ,

Metrics