Abstract

The excitation of surface plasmon polaritons (SPP) by focusing a laser beam on single subwavelength holes opened in a thin gold film is studied both experimentally and theoretically. By means of leakage radiation microscopy, quantitative measurements of the light-SPP coupling efficiency are performed for holes with different sizes and shapes. The system is studied theoretically by using a modal expansion method to calculate the fraction of the incident energy which is scattered by the hole into a surface plasmon. We demonstrate that a single subwavelength hole can be used to generate SPP with an efficiency up to 28%.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68, 115401 (2003).
    [Crossref]
  2. M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
    [Crossref]
  3. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
    [Crossref] [PubMed]
  4. E. Devaux, T.W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83, 4936–4938 (2003).
    [Crossref]
  5. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-Plasmon Resonance Effect in Grating Diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
    [Crossref]
  6. F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
    [Crossref]
  7. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006).
    [Crossref]
  8. H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
    [Crossref]
  9. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
    [Crossref]
  10. E. Popov, N. Bonod, M. Nevière, H. Rigneault, P.-F. Lenne, and P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 44, 2332–2337 (2005).
    [Crossref] [PubMed]
  11. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
    [Crossref]
  12. A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
    [Crossref]
  13. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Natur-forsch. Teil A 23, 2135–2136 (1963).
  14. H. Raether, Surface Plasmons, Springer Tracts in Modern Physics, Vol 111 (Springer, Berlin, 1988).
  15. J. Magnes, D. Odera, J. Hartke, M. Fountain, L. Florence, and V. Davis, “Quantitative and Qualitative Study of Gaussian Beam Visualization Techniques,” http://arxiv.org/abs/physics/0605102.
  16. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local Excitation, Scattering, and Interference of Surface Plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
    [Crossref] [PubMed]
  17. A. Vial, A-S. Grimault, D. Macías, D. Barchiesi, and M.L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
    [Crossref]
  18. R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13, 1933–1938 (2005).
    [Crossref] [PubMed]
  19. F. J. García-Vidal, L Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
    [Crossref]
  20. F. López-Tejeira, F.J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72, 161405 (2005).
    [Crossref]
  21. J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant Transmission of Light Through Finite Chains of Subwavelength Holes in a Metallic Film,” Phys. Rev. Lett. 93, 227401 (2004).
    [Crossref] [PubMed]
  22. F. de León-Pérez, F. J. García-Vidal, and L. Martín-Moreno, to be published.
  23. P. Lalanne, J. P. Hugonin, and J. C. Rodier “Theory of Surface Plasmon Generation at Nanoslit Apertures,” Phys. Rev. Lett. 95, 263902 (2005).
    [Crossref]
  24. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39 (2007).
    [Crossref] [PubMed]
  25. C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
    [Crossref]
  26. R. Wannemacher, “Plasmon-supported transmission of light through nanometric holes in metallic thin films,” Opt. Commun. 195, 107–118 (2001).
    [Crossref]

2007 (2)

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39 (2007).
[Crossref] [PubMed]

2006 (4)

F. J. García-Vidal, L Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006).
[Crossref]

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[Crossref]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[Crossref]

2005 (6)

E. Popov, N. Bonod, M. Nevière, H. Rigneault, P.-F. Lenne, and P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 44, 2332–2337 (2005).
[Crossref] [PubMed]

A. Vial, A-S. Grimault, D. Macías, D. Barchiesi, and M.L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13, 1933–1938 (2005).
[Crossref] [PubMed]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[Crossref] [PubMed]

F. López-Tejeira, F.J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72, 161405 (2005).
[Crossref]

P. Lalanne, J. P. Hugonin, and J. C. Rodier “Theory of Surface Plasmon Generation at Nanoslit Apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[Crossref]

2004 (1)

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant Transmission of Light Through Finite Chains of Subwavelength Holes in a Metallic Film,” Phys. Rev. Lett. 93, 227401 (2004).
[Crossref] [PubMed]

2003 (3)

E. Devaux, T.W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83, 4936–4938 (2003).
[Crossref]

H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[Crossref]

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68, 115401 (2003).
[Crossref]

2002 (1)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[Crossref]

2001 (1)

R. Wannemacher, “Plasmon-supported transmission of light through nanometric holes in metallic thin films,” Opt. Commun. 195, 107–118 (2001).
[Crossref]

2000 (1)

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

1996 (1)

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local Excitation, Scattering, and Interference of Surface Plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref] [PubMed]

1968 (1)

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-Plasmon Resonance Effect in Grating Diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
[Crossref]

1963 (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Natur-forsch. Teil A 23, 2135–2136 (1963).

Arakawa, E. T.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-Plasmon Resonance Effect in Grating Diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
[Crossref]

Aussenegg, F. R.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[Crossref]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[Crossref] [PubMed]

H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[Crossref]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[Crossref]

Barchiesi, D.

A. Vial, A-S. Grimault, D. Macías, D. Barchiesi, and M.L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Baudrion, A.-L.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[Crossref]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local Excitation, Scattering, and Interference of Surface Plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref] [PubMed]

Bonod, N.

Bozhevolnyi, S. I.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Bravo-Abad, J.

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant Transmission of Light Through Finite Chains of Subwavelength Holes in a Metallic Film,” Phys. Rev. Lett. 93, 227401 (2004).
[Crossref] [PubMed]

Brolo, A. G.

Chaumet, P.

Cowan, J. J.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-Plasmon Resonance Effect in Grating Diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
[Crossref]

Davis, V.

J. Magnes, D. Odera, J. Hartke, M. Fountain, L. Florence, and V. Davis, “Quantitative and Qualitative Study of Gaussian Beam Visualization Techniques,” http://arxiv.org/abs/physics/0605102.

de la Chapelle, M.L.

A. Vial, A-S. Grimault, D. Macías, D. Barchiesi, and M.L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

de León-Pérez, F.

F. de León-Pérez, F. J. García-Vidal, and L. Martín-Moreno, to be published.

Dereux, A.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[Crossref]

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68, 115401 (2003).
[Crossref]

E. Devaux, T.W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83, 4936–4938 (2003).
[Crossref]

Devaux, E.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[Crossref]

E. Devaux, T.W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83, 4936–4938 (2003).
[Crossref]

Ditlbacher, H.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[Crossref]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[Crossref] [PubMed]

H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[Crossref]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[Crossref]

Drezet, A.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[Crossref]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[Crossref] [PubMed]

Duch, A. C.

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[Crossref]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39 (2007).
[Crossref] [PubMed]

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Ebbesen, T.W.

E. Devaux, T.W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83, 4936–4938 (2003).
[Crossref]

Feldmann, J.

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[Crossref]

Florence, L.

J. Magnes, D. Odera, J. Hartke, M. Fountain, L. Florence, and V. Davis, “Quantitative and Qualitative Study of Gaussian Beam Visualization Techniques,” http://arxiv.org/abs/physics/0605102.

Fountain, M.

J. Magnes, D. Odera, J. Hartke, M. Fountain, L. Florence, and V. Davis, “Quantitative and Qualitative Study of Gaussian Beam Visualization Techniques,” http://arxiv.org/abs/physics/0605102.

Galler, N.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[Crossref]

García-Vidal, F. J.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

F. J. García-Vidal, L Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant Transmission of Light Through Finite Chains of Subwavelength Holes in a Metallic Film,” Phys. Rev. Lett. 93, 227401 (2004).
[Crossref] [PubMed]

F. de León-Pérez, F. J. García-Vidal, and L. Martín-Moreno, to be published.

García-Vidal, F.J.

F. López-Tejeira, F.J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72, 161405 (2005).
[Crossref]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39 (2007).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Gonzalez, M. U.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

González, M. U.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[Crossref]

Gordon, R.

F. J. García-Vidal, L Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13, 1933–1938 (2005).
[Crossref] [PubMed]

Grimault, A-S.

A. Vial, A-S. Grimault, D. Macías, D. Barchiesi, and M.L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Hamm, R. N.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-Plasmon Resonance Effect in Grating Diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
[Crossref]

Hartke, J.

J. Magnes, D. Odera, J. Hartke, M. Fountain, L. Florence, and V. Davis, “Quantitative and Qualitative Study of Gaussian Beam Visualization Techniques,” http://arxiv.org/abs/physics/0605102.

Hecht, B.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local Excitation, Scattering, and Interference of Surface Plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref] [PubMed]

Hohenau, A.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[Crossref]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[Crossref] [PubMed]

H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[Crossref]

Hugonin, J. P.

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006).
[Crossref]

P. Lalanne, J. P. Hugonin, and J. C. Rodier “Theory of Surface Plasmon Generation at Nanoslit Apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[Crossref]

Inouye, Y.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local Excitation, Scattering, and Interference of Surface Plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref] [PubMed]

Koch, M.

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[Crossref]

Krenn, J. R.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[Crossref]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[Crossref]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[Crossref] [PubMed]

H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[Crossref]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[Crossref]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Natur-forsch. Teil A 23, 2135–2136 (1963).

Kumar, L. K. S.

F. J. García-Vidal, L Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

Lacroute, Y.

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68, 115401 (2003).
[Crossref]

Lalanne, P.

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006).
[Crossref]

P. Lalanne, J. P. Hugonin, and J. C. Rodier “Theory of Surface Plasmon Generation at Nanoslit Apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[Crossref]

Leitner, A.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[Crossref]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[Crossref] [PubMed]

H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[Crossref]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[Crossref]

Lenne, P.-F.

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

López-Tejeira, F.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

F. López-Tejeira, F.J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72, 161405 (2005).
[Crossref]

Macías, D.

A. Vial, A-S. Grimault, D. Macías, D. Barchiesi, and M.L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Magnes, J.

J. Magnes, D. Odera, J. Hartke, M. Fountain, L. Florence, and V. Davis, “Quantitative and Qualitative Study of Gaussian Beam Visualization Techniques,” http://arxiv.org/abs/physics/0605102.

Martin-Moreno, L.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Martín-Moreno, L

F. J. García-Vidal, L Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

Martín-Moreno, L.

F. López-Tejeira, F.J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72, 161405 (2005).
[Crossref]

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant Transmission of Light Through Finite Chains of Subwavelength Holes in a Metallic Film,” Phys. Rev. Lett. 93, 227401 (2004).
[Crossref] [PubMed]

F. de León-Pérez, F. J. García-Vidal, and L. Martín-Moreno, to be published.

Moreno, E.

F. J. García-Vidal, L Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

Nevière, M.

Novotny, L.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local Excitation, Scattering, and Interference of Surface Plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref] [PubMed]

Odera, D.

J. Magnes, D. Odera, J. Hartke, M. Fountain, L. Florence, and V. Davis, “Quantitative and Qualitative Study of Gaussian Beam Visualization Techniques,” http://arxiv.org/abs/physics/0605102.

Pohl, D. W.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local Excitation, Scattering, and Interference of Surface Plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref] [PubMed]

Popov, E.

Radko, I. P.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Natur-forsch. Teil A 23, 2135–2136 (1963).

H. Raether, Surface Plasmons, Springer Tracts in Modern Physics, Vol 111 (Springer, Berlin, 1988).

Rigneault, H.

Ritchie, R. H.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-Plasmon Resonance Effect in Grating Diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
[Crossref]

Rodier, J. C.

P. Lalanne, J. P. Hugonin, and J. C. Rodier “Theory of Surface Plasmon Generation at Nanoslit Apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[Crossref]

Rodrigo, S. G.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Schider, G.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[Crossref]

Sonnichsen, C.

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[Crossref]

Steinberger, B.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[Crossref]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[Crossref] [PubMed]

Steininger, G.

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[Crossref]

Stepanov, A. L.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[Crossref]

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[Crossref]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[Crossref] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Vial, A.

A. Vial, A-S. Grimault, D. Macías, D. Barchiesi, and M.L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

von Plessen, G.

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[Crossref]

Wannemacher, R.

R. Wannemacher, “Plasmon-supported transmission of light through nanometric holes in metallic thin films,” Opt. Commun. 195, 107–118 (2001).
[Crossref]

Weeber, J.-C.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[Crossref]

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68, 115401 (2003).
[Crossref]

E. Devaux, T.W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83, 4936–4938 (2003).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[Crossref]

E. Devaux, T.W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83, 4936–4938 (2003).
[Crossref]

H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[Crossref]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[Crossref]

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[Crossref]

Nat. Phys. (2)

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006).
[Crossref]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

R. Wannemacher, “Plasmon-supported transmission of light through nanometric holes in metallic thin films,” Opt. Commun. 195, 107–118 (2001).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (5)

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68, 115401 (2003).
[Crossref]

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[Crossref]

F. J. García-Vidal, L Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

F. López-Tejeira, F.J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72, 161405 (2005).
[Crossref]

A. Vial, A-S. Grimault, D. Macías, D. Barchiesi, and M.L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Phys. Rev. Lett. (4)

P. Lalanne, J. P. Hugonin, and J. C. Rodier “Theory of Surface Plasmon Generation at Nanoslit Apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[Crossref]

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant Transmission of Light Through Finite Chains of Subwavelength Holes in a Metallic Film,” Phys. Rev. Lett. 93, 227401 (2004).
[Crossref] [PubMed]

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-Plasmon Resonance Effect in Grating Diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
[Crossref]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local Excitation, Scattering, and Interference of Surface Plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref] [PubMed]

Z. Natur-forsch. Teil A (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Natur-forsch. Teil A 23, 2135–2136 (1963).

Other (3)

H. Raether, Surface Plasmons, Springer Tracts in Modern Physics, Vol 111 (Springer, Berlin, 1988).

J. Magnes, D. Odera, J. Hartke, M. Fountain, L. Florence, and V. Davis, “Quantitative and Qualitative Study of Gaussian Beam Visualization Techniques,” http://arxiv.org/abs/physics/0605102.

F. de León-Pérez, F. J. García-Vidal, and L. Martín-Moreno, to be published.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(color online) Scheme of the leakage radiation microscope. SPPs are excited by laser light focused by the microscope objective O 1 (50×, numerical aperture=0.7) onto the sample’s features (inset). The leakage radiation emitted through the glass substrate is collected by the immersionmicroscope objective O 2 (63×, numerical aperture=1.25). The Fourier plane of this objective (F 1) is imaged, through a beam splitter, both on a charge-coupled-device (CCD) camera and on the detector of a powermeter. A beam-blocker is placed in the Fourier plane F 2 to stop the directly transmitted laser beam. The lens L 4 can be removed to image the sample plane on the CCD camera.

Fig. 2.
Fig. 2.

(a) Scanning electron microscope image of a circular hole with a diameter of 400nm opened in a 43 nm-thick-gold film. The white double arrow shows the direction of the polarization of the exciting laser beam. (b) Image of the Fourier plane recorded by the CCD camera for the hole shown in (a). The beam-blocker is used to suppress the transmitted laser beam. (c) Cross-cut recorded along the white dashed line in (b) showing the value separating the plasmon signal from the background (represented by a dashed line in (c)). (d) and (e) Same images as (b) obtained by numerically separating the intensity data above and below the value obtained in (c). The image (d) shows the plasmon signal and the image (e) shows the background signal.

Fig. 3.
Fig. 3.

Normalized coupling efficiency measured as a function of the circle diameter (a) and the square side length (b) of the hole. Both curves have been normalized by taking into account the fraction of power incident on the hole area. The error bars correspond to the spreading of the values during different measurement runs. The lines are mere guides to the eye.

Fig. 4.
Fig. 4.

(a) Radiative and ohmic losses of a SPP propagating in the air-gold interface of a 44 nm thick gold film calculated as a function of the incident wavelength. This calculation is based on the equations 2.22 and 2.23 of the reference [14]. The thickness of 44 nm has been chosen in order to have an equality between radiative and ohmic losses at a wavelength of 800nm. (b) Normalized coupling efficiency measured as a function of the incident wavelength for a circular hole with a diameter of 350 nm.

Fig. 5.
Fig. 5.

(color online) Normalized-to-area coupling efficiency computed as a function of the circle diameter (a) and the square side length (b) at an incident wavelength of 800nm. The solid red curves represent calculations neglecting the absorption of the metal while for the black dashed lines losses are taken into account. The virtual cylinder used for this computation is schematically represented in the inset as well as the different energy density fluxes J.

Fig. 6.
Fig. 6.

(color online) Normalized-to-area coupling efficiency of light to radiative waves (a) and to SPP (b) for a circular hole with a diameter of 350 nm, as a function of the incident wavelength. The solid curves represent calculations neglecting the absorption of the metal while for the dashed lines losses are taken into account.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E = P SPP P in = 2 P LR P in ,
E = P SPP P in = P LR + P Ω P in = P LR ( 1 + P Ω P LR ) P in

Metrics