Abstract

We propose a new scheme for data encryption in the physical layer. Our scheme is based on the distribution of a broadband optical noise-like signal between Alice and Bob. The broadband signal is used for the establishment of a secret key that can be used for the secure transmission of information by using the one-time-pad method. We characterize the proposed scheme and study its applicability to the existing fiber-optics communications infrastructure.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. VanWiggeren and R. Roy, "Communication with Chaotic Lasers," Science 279, 1198-1200 (1998).
    [CrossRef] [PubMed]
  2. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
    [CrossRef] [PubMed]
  3. L. Tancevski, I. Andonovic, and J. Budin, "Secure optical network architectures utilizing wavelength hopping/time spreading codes," IEEE Photon. Technol. Lett. 7, 573-575 (1995)
    [CrossRef]
  4. T. H. Shake, "Security performance of optical CDMA against eavesdropping," J. Lightwave Technol. 23, 655-670 (2005).
    [CrossRef]
  5. R. Anderson, Security Engineering : A guide to building dependable distributed systems, (New York: Wiley, 2001).
  6. C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer, "Generalized privacy amplification," IEEE Trans. Inf. Theory 41, 1915-1923 (1995).
    [CrossRef]
  7. G. C. Clark and J. B. Cain, Error-Correction Coding for Digital Communications (New York, Plenum Press, 1981).
  8. See for example "ITU-T Recommendation G.975.1," I. T. Union, Ed., 2004.
  9. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A signal processing approach, (Wiley Interscience, 1999).
  10. G. Shabtay, D. Mendlovic, and Y. Itzhar, "Optical single channel dispersion compensation devices and their application," European Conference on Optical Communication, Paper WE1. 2.1, ECOC Glasgow, 2005.
  11. A. E. Willner and B. Hoanca, "Fixed and tunable management of fiber chromatic dispersion," in Optical Fiber Telecommunications IVB: Systems and Impairments, I. P. Kaminow and T. Li, eds., (Academic Press, San Diego, Calif.; London, 2002).

2005 (2)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

T. H. Shake, "Security performance of optical CDMA against eavesdropping," J. Lightwave Technol. 23, 655-670 (2005).
[CrossRef]

1998 (1)

G. D. VanWiggeren and R. Roy, "Communication with Chaotic Lasers," Science 279, 1198-1200 (1998).
[CrossRef] [PubMed]

1995 (2)

L. Tancevski, I. Andonovic, and J. Budin, "Secure optical network architectures utilizing wavelength hopping/time spreading codes," IEEE Photon. Technol. Lett. 7, 573-575 (1995)
[CrossRef]

C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer, "Generalized privacy amplification," IEEE Trans. Inf. Theory 41, 1915-1923 (1995).
[CrossRef]

Andonovic, I.

L. Tancevski, I. Andonovic, and J. Budin, "Secure optical network architectures utilizing wavelength hopping/time spreading codes," IEEE Photon. Technol. Lett. 7, 573-575 (1995)
[CrossRef]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Argyris, A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer, "Generalized privacy amplification," IEEE Trans. Inf. Theory 41, 1915-1923 (1995).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer, "Generalized privacy amplification," IEEE Trans. Inf. Theory 41, 1915-1923 (1995).
[CrossRef]

Budin, J.

L. Tancevski, I. Andonovic, and J. Budin, "Secure optical network architectures utilizing wavelength hopping/time spreading codes," IEEE Photon. Technol. Lett. 7, 573-575 (1995)
[CrossRef]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer, "Generalized privacy amplification," IEEE Trans. Inf. Theory 41, 1915-1923 (1995).
[CrossRef]

Fischer, I.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Garcia-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Maurer, U. M.

C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer, "Generalized privacy amplification," IEEE Trans. Inf. Theory 41, 1915-1923 (1995).
[CrossRef]

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Roy, R.

G. D. VanWiggeren and R. Roy, "Communication with Chaotic Lasers," Science 279, 1198-1200 (1998).
[CrossRef] [PubMed]

Shake, T. H.

Shore, K. A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Syvridis, D.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Tancevski, L.

L. Tancevski, I. Andonovic, and J. Budin, "Secure optical network architectures utilizing wavelength hopping/time spreading codes," IEEE Photon. Technol. Lett. 7, 573-575 (1995)
[CrossRef]

VanWiggeren, G. D.

G. D. VanWiggeren and R. Roy, "Communication with Chaotic Lasers," Science 279, 1198-1200 (1998).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

L. Tancevski, I. Andonovic, and J. Budin, "Secure optical network architectures utilizing wavelength hopping/time spreading codes," IEEE Photon. Technol. Lett. 7, 573-575 (1995)
[CrossRef]

IEEE Trans. Inf. Theory (1)

C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer, "Generalized privacy amplification," IEEE Trans. Inf. Theory 41, 1915-1923 (1995).
[CrossRef]

J. Lightwave Technol. (1)

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Science (1)

G. D. VanWiggeren and R. Roy, "Communication with Chaotic Lasers," Science 279, 1198-1200 (1998).
[CrossRef] [PubMed]

Other (6)

R. Anderson, Security Engineering : A guide to building dependable distributed systems, (New York: Wiley, 2001).

G. C. Clark and J. B. Cain, Error-Correction Coding for Digital Communications (New York, Plenum Press, 1981).

See for example "ITU-T Recommendation G.975.1," I. T. Union, Ed., 2004.

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A signal processing approach, (Wiley Interscience, 1999).

G. Shabtay, D. Mendlovic, and Y. Itzhar, "Optical single channel dispersion compensation devices and their application," European Conference on Optical Communication, Paper WE1. 2.1, ECOC Glasgow, 2005.

A. E. Willner and B. Hoanca, "Fixed and tunable management of fiber chromatic dispersion," in Optical Fiber Telecommunications IVB: Systems and Impairments, I. P. Kaminow and T. Li, eds., (Academic Press, San Diego, Calif.; London, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Illustration of the principle of operation showing the structure of the key-establishment receiver. the electrical low-pass filter (E-LPF) is not plotted explicitly but it is assumed to be part of the photo-detection unit. For simplicity the figure relates only to the key establishment part of the system and to a single pair of users. In practice the random signal can be distributed among many pairs of WDM users. The spectrum in the WDM case is illustrated as well.

Fig. 2.
Fig. 2.

The proposed set-up for secure communications

Fig. 3.
Fig. 3.

The group delay spectra of 4 GT etalons with reflection coefficients of 0.3, 0.4, 0.5 and 0.6. The blue dashed curve represents the combined group delay spectrum of the scrambler. The GT etalon is illustrated in the inset.

Fig. 4.
Fig. 4.

Bob’s BER when the phase of one of the four etalons in his scrambler is offset relative to the correct value.

Fig. 5.
Fig. 5.

Raw BER as a function of the effective rate factor ρ. The traces correspond to three typical values of optical signal to noise ratio (OSNR).

Fig. 6.
Fig. 6.

The vertical axis represents the probability that Eve attains a BER value indicated by the horizontal axis when she guesses the soft-key parameters. (a) for several values of ρ and with 4 GT etalons (b) for ρ=0.7 and with the number of GT etalons being 1, 2, 4 and 8.

Fig. 7.
Fig. 7.

(a) The BER as a function of uncompensated dispersion in Bob’s receiver (b) The BER as a function of uncompensated differential group delay (DGD) in Bob’s receiver

Fig. 8.
Fig. 8.

(a) The measured group delay spectrum of two commercial tunable dispersion compensation devices by CIVCOM. Each device is implemented with four GT etalons. The etalon temperatures in the two devices were set to four identical, but arbitrary values. (b) The computed raw BER of a system that uses the two measured spectra, as a function of the effective rate factor.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

h ( t ) = r δ ( t ) + ( 1 r 2 ) e i φ [ δ ( t T ) + re i φ δ ( t 2 T ) + r 2 e 2 i φ δ ( t 3 T ) + ] ,
τ ( ω ) = T ( 1 r 2 ) 1 2 r cos ( ω T + φ ) + r 2
s A ( t ) = E ( t ) 2
s B ( t ) = E ( t ) + n ( t ) 2
S A = h ( τ ) s A ( τ ) d τ ,
S B = h ( τ ) s B ( τ ) d τ .
S B = S A + N ,
N 2 Re h ( τ ) E ( τ ) n ( τ ) d τ .
Var ( N | E ) = 2 N 0 h ( τ ) 2 s A ( τ ) d τ ,
n ( t ) n ( t ) = N 0 δ ( t t ) .
P ( ε ) = 0.5 [ 0 s l P ( N > s h S A S A ) f ( S A ) d S A + s h P ( N < s l S A S A ) f ( S A ) d S A ] =
0.5 [ 0 s l Q ( s h S A VAR ( N E ) ) f ( S A ) d S A + s h Q ( S A s l VAR ( N E ) ) f ( S A ) d S A ] ,
f s ( S A ) = { 1 ( 2 σ E 2 ) M 2 Γ ( M 2 ) S A M 2 1 e S A 2 σ E 2 for S A > 0 0 for S A 0 ,
VAR ( N | E ) = 4 σ E 2 S A OSNR ,
P ( d ) = s l s h f ( S A ) dS A
+ 0 s l [ Q ( s l S A VAR ( N E ) ) Q ( s h S A VAR ( N E ) ) ] f ( S A ) dS A +
+ s h [ Q ( S A s h VAR ( N E ) ) Q ( S A s l VAR ( N E ) ) ] f ( S A ) dS A

Metrics