Abstract

This letter reports telecom-band sequential time-bin entangled photon-pair generation at a repetition rate of 10 GHz in periodically poled reverse-proton-exchange lithium niobate waveguides based on mode demultiplexing. With up-conversion single-photon detectors, we observed an entangled-photon-pair flux of 313 Hz and a two-photon-interference-fringe visibility of 85.32% without subtraction of accidental noise contributions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bouwmeester, A. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).
  2. J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594 (1999).
    [CrossRef]
  3. P. R. Tapster, J. G. Rarity, and P. C. M. Owens, "Violation of Bell’s Inequality over 4 km of Optical Fiber," Phys. Rev. Lett. 73, 1923 (1994).
    [CrossRef] [PubMed]
  4. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Violation of Bell Inequalities by Photons More Than 10 km Apart," Phys. Rev. Lett. 81, 3563 (1998).
    [CrossRef]
  5. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
    [CrossRef] [PubMed]
  6. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001);
    [CrossRef]
  7. T. Honjo, H. Takesue, and K. Inoue, "Generation of energy-time entangled photon pairs in 1.5-um band with periodically poled lithium niobate waveguide," Opt. Express 15, 1679 (2007).
    [CrossRef] [PubMed]
  8. H. Takesue and K. Inoue, "Generation of 1.5-µm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers," Phys. Rev. A. 72, 041804 (2005).
    [CrossRef]
  9. Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, Y. Yamamoto, "Correlated photon-pair generation in reverse-proton-exchange PPLN waveguide with integrated mode demultiplexer at 10 GHz clock," Opt. Express 15, 10288 (2007).
    [CrossRef] [PubMed]
  10. Xiuping Xie and M. M. Fejer, "Two-spatial-mode parametric amplifier in lithium niobate waveguides with asymmetric Y junctions," Opt. Lett. 31, 799-801 (2006)
    [CrossRef] [PubMed]
  11. J. D. Franson, "Bell inequality for position and time," Phys. Rev. Lett. 62, 2205 (1989).
    [CrossRef] [PubMed]
  12. H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, "Tailoring photonic entanglement in high-dimensional Hibert space," Phys. Rev. A. 69, 050304 (2004).
    [CrossRef]
  13. C. Langrock, E. Diamantini, R. V. Roussev, H. Takesue, Y. Yamamoto and M. M. Fejer, "High efficient single-photon detection at communication wavelengths by use of up-conversion in reverse-proton-exchange periodically poled LiNbO3 waveguie," Opt. Lett. 30, 1725 (2005).
    [CrossRef] [PubMed]
  14. Here all the datas are taken or estimated in the 0.2-nm-wide 3 dB acceptance bandwidth of the detectors.
  15. J. F. Clauser, M. Horne, A. Shimony, and R. A. Holt, "Proposed Experiment to Test Local Hidden-Variable Theories Proposed Experiment to Test Local Hidden-Variable Theories," Phys. Rev. Lett. 23, 880 (1996).
    [CrossRef]

2007

2006

2005

2004

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, "Tailoring photonic entanglement in high-dimensional Hibert space," Phys. Rev. A. 69, 050304 (2004).
[CrossRef]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

2001

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001);
[CrossRef]

1999

J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594 (1999).
[CrossRef]

1998

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Violation of Bell Inequalities by Photons More Than 10 km Apart," Phys. Rev. Lett. 81, 3563 (1998).
[CrossRef]

1996

J. F. Clauser, M. Horne, A. Shimony, and R. A. Holt, "Proposed Experiment to Test Local Hidden-Variable Theories Proposed Experiment to Test Local Hidden-Variable Theories," Phys. Rev. Lett. 23, 880 (1996).
[CrossRef]

1994

P. R. Tapster, J. G. Rarity, and P. C. M. Owens, "Violation of Bell’s Inequality over 4 km of Optical Fiber," Phys. Rev. Lett. 73, 1923 (1994).
[CrossRef] [PubMed]

1989

J. D. Franson, "Bell inequality for position and time," Phys. Rev. Lett. 62, 2205 (1989).
[CrossRef] [PubMed]

Baldi, P.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001);
[CrossRef]

Brendel, J.

J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594 (1999).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Violation of Bell Inequalities by Photons More Than 10 km Apart," Phys. Rev. Lett. 81, 3563 (1998).
[CrossRef]

Clauser, J. F.

J. F. Clauser, M. Horne, A. Shimony, and R. A. Holt, "Proposed Experiment to Test Local Hidden-Variable Theories Proposed Experiment to Test Local Hidden-Variable Theories," Phys. Rev. Lett. 23, 880 (1996).
[CrossRef]

De Micheli, M.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001);
[CrossRef]

de Riedmatten, H.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, "Tailoring photonic entanglement in high-dimensional Hibert space," Phys. Rev. A. 69, 050304 (2004).
[CrossRef]

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001);
[CrossRef]

Diamantini, E.

Fejer, M. M.

Franson, J. D.

J. D. Franson, "Bell inequality for position and time," Phys. Rev. Lett. 62, 2205 (1989).
[CrossRef] [PubMed]

Gisin, N.

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, "Tailoring photonic entanglement in high-dimensional Hibert space," Phys. Rev. A. 69, 050304 (2004).
[CrossRef]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001);
[CrossRef]

J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594 (1999).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Violation of Bell Inequalities by Photons More Than 10 km Apart," Phys. Rev. Lett. 81, 3563 (1998).
[CrossRef]

Holt, R. A.

J. F. Clauser, M. Horne, A. Shimony, and R. A. Holt, "Proposed Experiment to Test Local Hidden-Variable Theories Proposed Experiment to Test Local Hidden-Variable Theories," Phys. Rev. Lett. 23, 880 (1996).
[CrossRef]

Honjo, T.

Horne, M.

J. F. Clauser, M. Horne, A. Shimony, and R. A. Holt, "Proposed Experiment to Test Local Hidden-Variable Theories Proposed Experiment to Test Local Hidden-Variable Theories," Phys. Rev. Lett. 23, 880 (1996).
[CrossRef]

Inoue, K.

T. Honjo, H. Takesue, and K. Inoue, "Generation of energy-time entangled photon pairs in 1.5-um band with periodically poled lithium niobate waveguide," Opt. Express 15, 1679 (2007).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, "Generation of 1.5-µm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers," Phys. Rev. A. 72, 041804 (2005).
[CrossRef]

Langrock, C.

Legre, M.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

Marcikic, I.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, "Tailoring photonic entanglement in high-dimensional Hibert space," Phys. Rev. A. 69, 050304 (2004).
[CrossRef]

Nam, S. W.

Ostrowsky, D. B.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001);
[CrossRef]

Owens, P. C. M.

P. R. Tapster, J. G. Rarity, and P. C. M. Owens, "Violation of Bell’s Inequality over 4 km of Optical Fiber," Phys. Rev. Lett. 73, 1923 (1994).
[CrossRef] [PubMed]

Rarity, J. G.

P. R. Tapster, J. G. Rarity, and P. C. M. Owens, "Violation of Bell’s Inequality over 4 km of Optical Fiber," Phys. Rev. Lett. 73, 1923 (1994).
[CrossRef] [PubMed]

Roussev, R. V.

Scarani, V.

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, "Tailoring photonic entanglement in high-dimensional Hibert space," Phys. Rev. A. 69, 050304 (2004).
[CrossRef]

Shimony, A.

J. F. Clauser, M. Horne, A. Shimony, and R. A. Holt, "Proposed Experiment to Test Local Hidden-Variable Theories Proposed Experiment to Test Local Hidden-Variable Theories," Phys. Rev. Lett. 23, 880 (1996).
[CrossRef]

Takesue, H.

Tanzilli, S.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001);
[CrossRef]

Tapster, P. R.

P. R. Tapster, J. G. Rarity, and P. C. M. Owens, "Violation of Bell’s Inequality over 4 km of Optical Fiber," Phys. Rev. Lett. 73, 1923 (1994).
[CrossRef] [PubMed]

Tittel, W.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, "Tailoring photonic entanglement in high-dimensional Hibert space," Phys. Rev. A. 69, 050304 (2004).
[CrossRef]

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001);
[CrossRef]

J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594 (1999).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Violation of Bell Inequalities by Photons More Than 10 km Apart," Phys. Rev. Lett. 81, 3563 (1998).
[CrossRef]

Xie, X.

Yamamoto, Y.

Zbinden, H.

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, "Tailoring photonic entanglement in high-dimensional Hibert space," Phys. Rev. A. 69, 050304 (2004).
[CrossRef]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001);
[CrossRef]

J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594 (1999).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Violation of Bell Inequalities by Photons More Than 10 km Apart," Phys. Rev. Lett. 81, 3563 (1998).
[CrossRef]

Zhang, Q.

Electron. Lett.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001);
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A.

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, "Tailoring photonic entanglement in high-dimensional Hibert space," Phys. Rev. A. 69, 050304 (2004).
[CrossRef]

H. Takesue and K. Inoue, "Generation of 1.5-µm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers," Phys. Rev. A. 72, 041804 (2005).
[CrossRef]

Phys. Rev. Lett.

J. D. Franson, "Bell inequality for position and time," Phys. Rev. Lett. 62, 2205 (1989).
[CrossRef] [PubMed]

J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594 (1999).
[CrossRef]

P. R. Tapster, J. G. Rarity, and P. C. M. Owens, "Violation of Bell’s Inequality over 4 km of Optical Fiber," Phys. Rev. Lett. 73, 1923 (1994).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Violation of Bell Inequalities by Photons More Than 10 km Apart," Phys. Rev. Lett. 81, 3563 (1998).
[CrossRef]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

J. F. Clauser, M. Horne, A. Shimony, and R. A. Holt, "Proposed Experiment to Test Local Hidden-Variable Theories Proposed Experiment to Test Local Hidden-Variable Theories," Phys. Rev. Lett. 23, 880 (1996).
[CrossRef]

Other

D. Bouwmeester, A. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).

Here all the datas are taken or estimated in the 0.2-nm-wide 3 dB acceptance bandwidth of the detectors.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Modulated 10-GHz laser-pulse setup (a) and pulse train (b). An in-line polarization controller is used to change the polarization meeting the polarization dependence of the interferometer. The pulse-train picture is captured from a 40-GHz oscilloscope.

Fig. 2.
Fig. 2.

Setup for 10-GHz sequential time-bin entanglement generation. A 10-GHz laser pulse train is amplified by an erbium-doped fiber amplifier (EDFA) and spontaneous-emission generated by the EDFA is cut by a tunable band-pass filter (TBPF) with a 1-nm bandwidth. A variable attenuator (VATT) is used to control the laser power and a polarization controller is used to launch the proper polarization into the PPLN waveguide. PPLN1 is the waveguide used for second-harmonic generation (SHG) of 779.5-nm pump pulses and PPLN2 is the Y-junction waveguide used for parametric down-conversion. Between them are four dichroic mirrors to greatly reduce the residual 1559-nm photons. The two outputs of PPLN2 are fiber pigtailed and two fiber U-benches both with a long pass filter in them are utilized to eliminate the 779.5 nm pump. Ds and Di are two up-conversion-assisted Si APDs.

Fig. 3.
Fig. 3.

Histogram of time spectrum of the correlated photon pairs.

Fig. 4.
Fig. 4.

Coincidence interference fringes observed in the experiment. T1 and T2 are the temperatures of the PLC interferometers in the signal and idler channels, respectively. All coincidence points in the figure are derived from one million start triggers for the TIA.

Tables (1)

Tables Icon

Table 1. Loss distribution of the whole system

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t 1 s t 1 i + e j ω p τ 1 t 2 s t 2 i + . . . + e j n ω p τ n t n s t n i + . . .
t 1 s t 1 i + ( e j w p τ 1 + e j ( θ s + θ i ) ) t 2 s t 2 i + . . . + e j ( n 1 ) w p τ n ( e j w p τ 1 + e j ( θ s + θ i ) ) t n s t n i + . . .

Metrics