Abstract

We report increased wavelength options from Raman lasers for Raman media having two Raman modes of similar gain coefficient. For an external-cavity potassium gadolinium tungstate Raman laser pumped at 532nm, we show that two sets of Stokes orders are generated simultaneously by appropriate orientation of the Raman crystal, and also wavelengths that correspond to sums of the two Raman modes. Up to 14 visible Stokes lines were observed in the wavelength range 555-675nm. The increase in Stokes wavelengths also enables a much greater selection of wavelengths to be accessed via intracavity nonlinear sum frequency and difference frequency mixing. For example, we demonstrate 30 output wavelength options for a wavelength-selectable 271-321nm Raman laser with intracavity sum frequency mixing in BBO. We also present a theoretical analysis that enables prediction of wavelength options for dual Raman mode systems.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Discretely tunable, all-solid-state laser in the green, yellow, and red

Richard P. Mildren, Helen M. Pask, Hamish Ogilvy, and James A. Piper
Opt. Lett. 30(12) 1500-1502 (2005)

Theoretical and experimental research on the multi-frequency Raman converter with KGd(WO4)2 crystal

Shuanghong Ding, Xingyu Zhang, Qingpu Wang, Fufang Su, Shutao Li, Shuzhen Fan, Zhaojun Liu, Jun Chang, Sasa Zhang, Shumei Wang, and Yuru Liu
Opt. Express 13(25) 10120-10128 (2005)

Solid-state Raman laser generating discretely tunable ultraviolet between 266 and 320 nm

Richard P. Mildren, Hamish Ogilvy, and James A. Piper
Opt. Lett. 32(7) 814-816 (2007)

References

  • View by:
  • |
  • |
  • |

  1. R.W. Boyd, Nonlinear optics, 2nd ed. (Academic Press, 2003).
  2. P. Cerny and H. Jelinkova, “Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal,” Opt. Lett. 27, 360–362 (2002).
    [Crossref]
  3. R.P. Mildren, H.M. Pask, and J.A. Piper, “High-Efficiency Raman converter generating 1.5W of red-orange output,” in Advanced Solid-State Photonics 2006 Technical Digest (Optical Society of America, 2006), paper MC3.
  4. J.T. Murray, W.L. Austin, and R.C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11, 353–371 (1999).
    [Crossref]
  5. E.O. Ammann, “High-average-power Raman oscillator employing a shared-resonator configuration,” Appl. Phys. Lett. 32, 52–54 (1978).
    [Crossref]
  6. H.M. Pask and J.A. Piper, “Practical 580 nm source based on frequency doubling of an intracavity-Ramanshifted Nd:YAG laser,” Opt. Commun. 148285–288 (1998).
    [Crossref]
  7. V. A. Lisinetskii, A. S. Grabtchikov, I. A. Khodasevich, H. J. Eichler, and V. A. Orlovich, “Efficient high energy 1st, 2nd or 3rd Stokes Raman generation in IR region,” Opt. Commun. 272, 509–513 (2007).
    [Crossref]
  8. C. He and T.H. Chyba, “Solid-state barium nitrate Raman laser in the visible region”, Opt. Commun. 135, 273–278 (1997).
    [Crossref]
  9. R.P. Mildren, M. Convery, H.M. Pask, J.A. Piper, and T. Mckay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red”, Opt. Express 12, 785–790 (2004).
    [Crossref] [PubMed]
  10. H. M. Pask, S. Myers, J. A. Piper, J. Richards, and T. McKay, “High average power, all-solid-state external resonator Raman laser,” Opt. Lett. 28, 435–437 (2003).
    [Crossref] [PubMed]
  11. S. Li, X. Zhang, Q. Wang, X. Zhang, Z. Cong, H. Zhang, and J. Wang, “Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm,” Opt. Lett. 32, 2951–2953 (2007).
    [Crossref] [PubMed]
  12. R.P. Mildren, H. Ogilvy, and J.A. Piper, “Solid-state Raman laser generating discretely tunable ultraviolet between 266–321nm”, Opt. Lett. 32, 814–816 (2007).
    [Crossref] [PubMed]
  13. L. Macalik, J. Hanuza, and A.A. Kaminski, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,”J. Molec. Struct. 555, 1891–1897 (2000).
    [Crossref]
  14. J. Findeisen, H.J. Eichler, and A. A. Kaminskii, “Efficient picosecond PbWO4 and two-wavelength KGd(WO4) Raman lasers in the IR and visible,” IEEE J. Quantum Electron. 35, 173–178 (1999).
    [Crossref]
  15. I.V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+ (KGW:Nd)”, Opt. Eng. 36, 1660–1669 (1997).
    [Crossref]
  16. D. von der Linde, M. Maier, and W. Kaiser, “Quantitative investigations of the stimulated Raman effect using subnanosecond light pulses,” Phys. Rev. A 178, 11–17 (1969).
  17. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27, 1–56 (2003).
    [Crossref]
  18. T. T. Basiev and R. C. Powell, “Solid-state Raman lasers,” in Handbook of Laser Technology and Applications Volume II: Laser Design and Laser Systems, C. E. Webb and J.D.C. Jones, eds. (Institute of Physics UK, 2004), pp469–497.
  19. P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
    [Crossref]
  20. H.M. Pask and J.A. Piper, “Crystalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
    [Crossref]
  21. E.O. Ammann, “Simultaneous stimulated Raman scattering and optical frequency mixing in lithium iodate,” Appl. Phys. Lett. 34, 838–846 (1979).
    [Crossref]
  22. R. P. Mildren, H. M. Pask, H. Ogilvy, and J. A. Piper, “Discretely tunable, all-solid-state laser in the green, yellow and red”, Opt. Lett. 30, 1500–1502 (2005).
    [Crossref] [PubMed]
  23. S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, Z. Liu, J. Chang, S. Zhang, S. Wang, and Y. Liu, “Theoretical and experimental research on the multi-frequency Raman converter with KGd(WO4)2 crystal,” Opt. Express 13, 10120–10128 (2005).
    [Crossref] [PubMed]
  24. M.D. Martin and E.L. Thomas, “Infrared difference frequency generation,” IEEE J. Quantum Electron. QE-2, 196–201 (1966).
    [Crossref]
  25. D.G. Lancaster and J.M. Dawes, “Methane detection with a narrow-band source at 3.4 µm based on a Nd:YAG pump laser and a combination of stimulated Raman scattering and difference frequency mixing”, Appl. Opt. 35, 4041–4045 (1996).
    [Crossref] [PubMed]
  26. D-W. Chen, “Continuous-wave tunable midwave infrared generation near 4.5µm with an intracavity optical parametric oscillator and difference frequency generation,” J. Opt. Soc. Am. B 20, 1527–1531 (2003).
    [Crossref]
  27. P. Canarelli, Z. Benko, R. Curl, and F.K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197–202 (1992).
    [Crossref]
  28. E.O. Ammann, “High-average-power Raman oscillator employing a shared-resonator configuration,” Appl. Phys. Lett. 32, 52–54 (1978).
    [Crossref]

2007 (4)

V. A. Lisinetskii, A. S. Grabtchikov, I. A. Khodasevich, H. J. Eichler, and V. A. Orlovich, “Efficient high energy 1st, 2nd or 3rd Stokes Raman generation in IR region,” Opt. Commun. 272, 509–513 (2007).
[Crossref]

S. Li, X. Zhang, Q. Wang, X. Zhang, Z. Cong, H. Zhang, and J. Wang, “Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm,” Opt. Lett. 32, 2951–2953 (2007).
[Crossref] [PubMed]

R.P. Mildren, H. Ogilvy, and J.A. Piper, “Solid-state Raman laser generating discretely tunable ultraviolet between 266–321nm”, Opt. Lett. 32, 814–816 (2007).
[Crossref] [PubMed]

H.M. Pask and J.A. Piper, “Crystalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
[Crossref]

2005 (2)

2004 (2)

R.P. Mildren, M. Convery, H.M. Pask, J.A. Piper, and T. Mckay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red”, Opt. Express 12, 785–790 (2004).
[Crossref] [PubMed]

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
[Crossref]

2003 (3)

2002 (1)

2000 (1)

L. Macalik, J. Hanuza, and A.A. Kaminski, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,”J. Molec. Struct. 555, 1891–1897 (2000).
[Crossref]

1999 (2)

J. Findeisen, H.J. Eichler, and A. A. Kaminskii, “Efficient picosecond PbWO4 and two-wavelength KGd(WO4) Raman lasers in the IR and visible,” IEEE J. Quantum Electron. 35, 173–178 (1999).
[Crossref]

J.T. Murray, W.L. Austin, and R.C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11, 353–371 (1999).
[Crossref]

1998 (1)

H.M. Pask and J.A. Piper, “Practical 580 nm source based on frequency doubling of an intracavity-Ramanshifted Nd:YAG laser,” Opt. Commun. 148285–288 (1998).
[Crossref]

1997 (2)

C. He and T.H. Chyba, “Solid-state barium nitrate Raman laser in the visible region”, Opt. Commun. 135, 273–278 (1997).
[Crossref]

I.V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+ (KGW:Nd)”, Opt. Eng. 36, 1660–1669 (1997).
[Crossref]

1996 (1)

1992 (1)

1979 (1)

E.O. Ammann, “Simultaneous stimulated Raman scattering and optical frequency mixing in lithium iodate,” Appl. Phys. Lett. 34, 838–846 (1979).
[Crossref]

1978 (2)

E.O. Ammann, “High-average-power Raman oscillator employing a shared-resonator configuration,” Appl. Phys. Lett. 32, 52–54 (1978).
[Crossref]

E.O. Ammann, “High-average-power Raman oscillator employing a shared-resonator configuration,” Appl. Phys. Lett. 32, 52–54 (1978).
[Crossref]

1969 (1)

D. von der Linde, M. Maier, and W. Kaiser, “Quantitative investigations of the stimulated Raman effect using subnanosecond light pulses,” Phys. Rev. A 178, 11–17 (1969).

1966 (1)

M.D. Martin and E.L. Thomas, “Infrared difference frequency generation,” IEEE J. Quantum Electron. QE-2, 196–201 (1966).
[Crossref]

Ammann, E.O.

E.O. Ammann, “Simultaneous stimulated Raman scattering and optical frequency mixing in lithium iodate,” Appl. Phys. Lett. 34, 838–846 (1979).
[Crossref]

E.O. Ammann, “High-average-power Raman oscillator employing a shared-resonator configuration,” Appl. Phys. Lett. 32, 52–54 (1978).
[Crossref]

E.O. Ammann, “High-average-power Raman oscillator employing a shared-resonator configuration,” Appl. Phys. Lett. 32, 52–54 (1978).
[Crossref]

Austin, W.L.

J.T. Murray, W.L. Austin, and R.C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11, 353–371 (1999).
[Crossref]

Basiev, T. T.

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
[Crossref]

T. T. Basiev and R. C. Powell, “Solid-state Raman lasers,” in Handbook of Laser Technology and Applications Volume II: Laser Design and Laser Systems, C. E. Webb and J.D.C. Jones, eds. (Institute of Physics UK, 2004), pp469–497.

Benko, Z.

Boyd, R.W.

R.W. Boyd, Nonlinear optics, 2nd ed. (Academic Press, 2003).

Canarelli, P.

Cerny, P.

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
[Crossref]

P. Cerny and H. Jelinkova, “Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal,” Opt. Lett. 27, 360–362 (2002).
[Crossref]

Chang, J.

Chen, D-W.

Chyba, T.H.

C. He and T.H. Chyba, “Solid-state barium nitrate Raman laser in the visible region”, Opt. Commun. 135, 273–278 (1997).
[Crossref]

Cong, Z.

Convery, M.

Curl, R.

Dawes, J.M.

Ding, S.

Eichler, H. J.

V. A. Lisinetskii, A. S. Grabtchikov, I. A. Khodasevich, H. J. Eichler, and V. A. Orlovich, “Efficient high energy 1st, 2nd or 3rd Stokes Raman generation in IR region,” Opt. Commun. 272, 509–513 (2007).
[Crossref]

Eichler, H.J.

J. Findeisen, H.J. Eichler, and A. A. Kaminskii, “Efficient picosecond PbWO4 and two-wavelength KGd(WO4) Raman lasers in the IR and visible,” IEEE J. Quantum Electron. 35, 173–178 (1999).
[Crossref]

Fan, S.

Findeisen, J.

J. Findeisen, H.J. Eichler, and A. A. Kaminskii, “Efficient picosecond PbWO4 and two-wavelength KGd(WO4) Raman lasers in the IR and visible,” IEEE J. Quantum Electron. 35, 173–178 (1999).
[Crossref]

Grabtchikov, A. S.

V. A. Lisinetskii, A. S. Grabtchikov, I. A. Khodasevich, H. J. Eichler, and V. A. Orlovich, “Efficient high energy 1st, 2nd or 3rd Stokes Raman generation in IR region,” Opt. Commun. 272, 509–513 (2007).
[Crossref]

Hanuza, J.

L. Macalik, J. Hanuza, and A.A. Kaminski, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,”J. Molec. Struct. 555, 1891–1897 (2000).
[Crossref]

He, C.

C. He and T.H. Chyba, “Solid-state barium nitrate Raman laser in the visible region”, Opt. Commun. 135, 273–278 (1997).
[Crossref]

Jelinkova, H.

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
[Crossref]

P. Cerny and H. Jelinkova, “Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal,” Opt. Lett. 27, 360–362 (2002).
[Crossref]

Kaiser, W.

D. von der Linde, M. Maier, and W. Kaiser, “Quantitative investigations of the stimulated Raman effect using subnanosecond light pulses,” Phys. Rev. A 178, 11–17 (1969).

Kaminski, A.A.

L. Macalik, J. Hanuza, and A.A. Kaminski, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,”J. Molec. Struct. 555, 1891–1897 (2000).
[Crossref]

Kaminskii, A. A.

J. Findeisen, H.J. Eichler, and A. A. Kaminskii, “Efficient picosecond PbWO4 and two-wavelength KGd(WO4) Raman lasers in the IR and visible,” IEEE J. Quantum Electron. 35, 173–178 (1999).
[Crossref]

Khodasevich, I. A.

V. A. Lisinetskii, A. S. Grabtchikov, I. A. Khodasevich, H. J. Eichler, and V. A. Orlovich, “Efficient high energy 1st, 2nd or 3rd Stokes Raman generation in IR region,” Opt. Commun. 272, 509–513 (2007).
[Crossref]

Lancaster, D.G.

Li, S.

Lisinetskii, V. A.

V. A. Lisinetskii, A. S. Grabtchikov, I. A. Khodasevich, H. J. Eichler, and V. A. Orlovich, “Efficient high energy 1st, 2nd or 3rd Stokes Raman generation in IR region,” Opt. Commun. 272, 509–513 (2007).
[Crossref]

Liu, Y.

Liu, Z.

Macalik, L.

L. Macalik, J. Hanuza, and A.A. Kaminski, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,”J. Molec. Struct. 555, 1891–1897 (2000).
[Crossref]

Maier, M.

D. von der Linde, M. Maier, and W. Kaiser, “Quantitative investigations of the stimulated Raman effect using subnanosecond light pulses,” Phys. Rev. A 178, 11–17 (1969).

Martin, M.D.

M.D. Martin and E.L. Thomas, “Infrared difference frequency generation,” IEEE J. Quantum Electron. QE-2, 196–201 (1966).
[Crossref]

Mckay, T.

Mildren, R. P.

Mildren, R.P.

Mochalov, I.V.

I.V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+ (KGW:Nd)”, Opt. Eng. 36, 1660–1669 (1997).
[Crossref]

Murray, J.T.

J.T. Murray, W.L. Austin, and R.C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11, 353–371 (1999).
[Crossref]

Myers, S.

Ogilvy, H.

Orlovich, V. A.

V. A. Lisinetskii, A. S. Grabtchikov, I. A. Khodasevich, H. J. Eichler, and V. A. Orlovich, “Efficient high energy 1st, 2nd or 3rd Stokes Raman generation in IR region,” Opt. Commun. 272, 509–513 (2007).
[Crossref]

Pask, H. M.

Pask, H.M.

H.M. Pask and J.A. Piper, “Crystalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
[Crossref]

R.P. Mildren, M. Convery, H.M. Pask, J.A. Piper, and T. Mckay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red”, Opt. Express 12, 785–790 (2004).
[Crossref] [PubMed]

H.M. Pask and J.A. Piper, “Practical 580 nm source based on frequency doubling of an intracavity-Ramanshifted Nd:YAG laser,” Opt. Commun. 148285–288 (1998).
[Crossref]

R.P. Mildren, H.M. Pask, and J.A. Piper, “High-Efficiency Raman converter generating 1.5W of red-orange output,” in Advanced Solid-State Photonics 2006 Technical Digest (Optical Society of America, 2006), paper MC3.

Piper, J. A.

Piper, J.A.

H.M. Pask and J.A. Piper, “Crystalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
[Crossref]

R.P. Mildren, H. Ogilvy, and J.A. Piper, “Solid-state Raman laser generating discretely tunable ultraviolet between 266–321nm”, Opt. Lett. 32, 814–816 (2007).
[Crossref] [PubMed]

R.P. Mildren, M. Convery, H.M. Pask, J.A. Piper, and T. Mckay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red”, Opt. Express 12, 785–790 (2004).
[Crossref] [PubMed]

H.M. Pask and J.A. Piper, “Practical 580 nm source based on frequency doubling of an intracavity-Ramanshifted Nd:YAG laser,” Opt. Commun. 148285–288 (1998).
[Crossref]

R.P. Mildren, H.M. Pask, and J.A. Piper, “High-Efficiency Raman converter generating 1.5W of red-orange output,” in Advanced Solid-State Photonics 2006 Technical Digest (Optical Society of America, 2006), paper MC3.

Powell, R. C.

T. T. Basiev and R. C. Powell, “Solid-state Raman lasers,” in Handbook of Laser Technology and Applications Volume II: Laser Design and Laser Systems, C. E. Webb and J.D.C. Jones, eds. (Institute of Physics UK, 2004), pp469–497.

Powell, R.C.

J.T. Murray, W.L. Austin, and R.C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11, 353–371 (1999).
[Crossref]

Richards, J.

Su, F.

Thomas, E.L.

M.D. Martin and E.L. Thomas, “Infrared difference frequency generation,” IEEE J. Quantum Electron. QE-2, 196–201 (1966).
[Crossref]

Tittel, F.K.

von der Linde, D.

D. von der Linde, M. Maier, and W. Kaiser, “Quantitative investigations of the stimulated Raman effect using subnanosecond light pulses,” Phys. Rev. A 178, 11–17 (1969).

Wang, J.

Wang, Q.

Wang, S.

Zhang, H.

Zhang, S.

Zhang, X.

Zverev, P. G.

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

E.O. Ammann, “Simultaneous stimulated Raman scattering and optical frequency mixing in lithium iodate,” Appl. Phys. Lett. 34, 838–846 (1979).
[Crossref]

E.O. Ammann, “High-average-power Raman oscillator employing a shared-resonator configuration,” Appl. Phys. Lett. 32, 52–54 (1978).
[Crossref]

E.O. Ammann, “High-average-power Raman oscillator employing a shared-resonator configuration,” Appl. Phys. Lett. 32, 52–54 (1978).
[Crossref]

IEEE J. Quantum Electron. (2)

J. Findeisen, H.J. Eichler, and A. A. Kaminskii, “Efficient picosecond PbWO4 and two-wavelength KGd(WO4) Raman lasers in the IR and visible,” IEEE J. Quantum Electron. 35, 173–178 (1999).
[Crossref]

M.D. Martin and E.L. Thomas, “Infrared difference frequency generation,” IEEE J. Quantum Electron. QE-2, 196–201 (1966).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H.M. Pask and J.A. Piper, “Crystalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
[Crossref]

J. Molec. Struct. (1)

L. Macalik, J. Hanuza, and A.A. Kaminski, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,”J. Molec. Struct. 555, 1891–1897 (2000).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (3)

H.M. Pask and J.A. Piper, “Practical 580 nm source based on frequency doubling of an intracavity-Ramanshifted Nd:YAG laser,” Opt. Commun. 148285–288 (1998).
[Crossref]

V. A. Lisinetskii, A. S. Grabtchikov, I. A. Khodasevich, H. J. Eichler, and V. A. Orlovich, “Efficient high energy 1st, 2nd or 3rd Stokes Raman generation in IR region,” Opt. Commun. 272, 509–513 (2007).
[Crossref]

C. He and T.H. Chyba, “Solid-state barium nitrate Raman laser in the visible region”, Opt. Commun. 135, 273–278 (1997).
[Crossref]

Opt. Eng. (1)

I.V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+ (KGW:Nd)”, Opt. Eng. 36, 1660–1669 (1997).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Opt. Mater. (1)

J.T. Murray, W.L. Austin, and R.C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11, 353–371 (1999).
[Crossref]

Phys. Rev. A (1)

D. von der Linde, M. Maier, and W. Kaiser, “Quantitative investigations of the stimulated Raman effect using subnanosecond light pulses,” Phys. Rev. A 178, 11–17 (1969).

Prog. Quantum Electron. (2)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27, 1–56 (2003).
[Crossref]

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
[Crossref]

Other (3)

T. T. Basiev and R. C. Powell, “Solid-state Raman lasers,” in Handbook of Laser Technology and Applications Volume II: Laser Design and Laser Systems, C. E. Webb and J.D.C. Jones, eds. (Institute of Physics UK, 2004), pp469–497.

R.W. Boyd, Nonlinear optics, 2nd ed. (Academic Press, 2003).

R.P. Mildren, H.M. Pask, and J.A. Piper, “High-Efficiency Raman converter generating 1.5W of red-orange output,” in Advanced Solid-State Photonics 2006 Technical Digest (Optical Society of America, 2006), paper MC3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Spontaneous Raman spectra for KGW for pump propagation along the Np axis and polarization aligned parallel and perpendicular to the crystal a-axis. Two strong Raman modes are observed at energies hµ1=768cm-1 and hµ2=901cm-1 (h; Planck’s constant). It should be noted for propagation along the b-axis that peak Raman gain for each mode occurs for the pump aligned with the crystallo-optic axes (Nm, Ng) which are offset by approximately 20 degrees from the crystal axes (a, c)[15].

Fig. 2.
Fig. 2.

Stokes spectra for Raman lasers with 1 and 2 active Raman modes shown for nm ≤4.

Fig. 3.
Fig. 3.

Layout of the Raman laser with intracavity nonlinear mixing.

Fig. 4.
Fig. 4.

Visible output spectra of the Raman laser as a function of the rotation angle ϕ about the propagation axis. The lower plot corresponds to the rotation angle ϕ=0 deg and the pump electric field vector aligned to the c -axis as shown in the inset. Plots sequentially offset in the vertical direction correspond to 10-degree increments in ϕ.

Fig. 5.
Fig. 5.

Output characteristics for the 283.3nm and 284.5nm lines.

Tables (4)

Tables Icon

Table 1. The calculated number of Stokes lines and harmonic wavelength options as a function of nm .

Tables Icon

Table 2. Visible Stokes orders observed for three KGW rotation angles.

Tables Icon

Table 3. Output wavelengths for the KGW Raman laser with intracavity SF mixing.

Tables Icon

Table 4. Difference frequency wavelengths available for a dual-Raman mode KGW laser with n m=2.

Metrics