Abstract

We report terahertz quantum cascade lasers operating in pulsed mode at an emission frequency of 3 THz and up to a maximum temperature of 178 K. The improvement in the maximum operating temperature is achieved by using a three-quantum-well active region design with resonant-phonon depopulation and by utilizing copper, instead of gold, for the cladding material in the metal-metal waveguides.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156 (2002).
    [CrossRef] [PubMed]
  2. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82, 1015 (2003).
    [CrossRef]
  3. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at ? ? 100 ?m using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
    [CrossRef]
  4. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331 (2005).
    [CrossRef] [PubMed]
  5. A. Tredicucci, L. Mahler, T. Losco, J. Xu, C. Mauro, R. Köhler, H. E. Beere, D. A. Ritchie, and E. H.  Linfield, "Advances in THz quantum cascade lasers: fulfilling the application potential," Proc. SPIE 5738, 146 (2005).
    [CrossRef]
  6. C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, "Quantum cascade lasers operating from 1.2 to 1.6 THz," Appl. Phys. Lett. 91, 131122 (2007).
    [CrossRef]
  7. B. S. Williams, "Terahertz Quantum Cascade Lasers," Nature Photon. 1, 517-525 (2007).
    [CrossRef]
  8. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers with double metal-semiconductor waveguide resonators," Appl. Phys. Lett. 80, 3060 (2002).
    [CrossRef]
  9. S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97, 053106 (2005).
    [CrossRef]
  10. S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, Q. Hu, J. L. Reno, Z. R. Wasilewski, H. C. Liu, "Terahertz quantum-cascade lasers with resonant-phonon depopulation: high temperature and low-frequency operation," in Proceedings of the Ninth International Conference on Intersubband Transitions in Quantum Wells, D. Indjin, Z. Ikonic, P. Harrison, and R.W. Kelsall, eds. (University of Leeds, Leeds, U.K., 2007), T16.
  11. K. N. Chen, A. Fan, C. S. Tan, R. Reif, and C. Y. Yen, "Microstructure evolution and abnormal grain growth during copper wafer bonding," Appl. Phys. Lett. 81, 3774 (2002).
    [CrossRef]
  12. M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. A. Austin, J. W. Cockburn, L. R. Wilson, A. B. Krysa, J. R. Roberts, "Room-temperature operation of ??7.5 µm surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
    [CrossRef]
  13. M. A. Ordal, R. J. Bell, R. W. Alexander Jr., L. L. Long, and M. R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V and W," Appl. Opt. 24, 4493 (1985).
    [CrossRef] [PubMed]
  14. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  15. "Electrical Resistivity of Pure Metals," in CRC Handbook of Chemistry and Physics, 88th Edition (Internet Version 2008), D. R. Lide, ed. (CRC Press/Taylor and Francis, Boca Raton, Fla., 2008.
  16. H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 041112 (2007).
    [CrossRef]
  17. J. Faist, "Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits," Appl. Phys. Lett. 90, 253512 (2007).
    [CrossRef]

2007 (4)

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, "Quantum cascade lasers operating from 1.2 to 1.6 THz," Appl. Phys. Lett. 91, 131122 (2007).
[CrossRef]

B. S. Williams, "Terahertz Quantum Cascade Lasers," Nature Photon. 1, 517-525 (2007).
[CrossRef]

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 041112 (2007).
[CrossRef]

J. Faist, "Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits," Appl. Phys. Lett. 90, 253512 (2007).
[CrossRef]

2006 (1)

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. A. Austin, J. W. Cockburn, L. R. Wilson, A. B. Krysa, J. R. Roberts, "Room-temperature operation of ??7.5 µm surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

2005 (3)

S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

A. Tredicucci, L. Mahler, T. Losco, J. Xu, C. Mauro, R. Köhler, H. E. Beere, D. A. Ritchie, and E. H.  Linfield, "Advances in THz quantum cascade lasers: fulfilling the application potential," Proc. SPIE 5738, 146 (2005).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331 (2005).
[CrossRef] [PubMed]

2003 (2)

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82, 1015 (2003).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at ? ? 100 ?m using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
[CrossRef]

2002 (3)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156 (2002).
[CrossRef] [PubMed]

K. N. Chen, A. Fan, C. S. Tan, R. Reif, and C. Y. Yen, "Microstructure evolution and abnormal grain growth during copper wafer bonding," Appl. Phys. Lett. 81, 3774 (2002).
[CrossRef]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers with double metal-semiconductor waveguide resonators," Appl. Phys. Lett. 80, 3060 (2002).
[CrossRef]

1985 (1)

Aers, G. C.

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 041112 (2007).
[CrossRef]

Alexander, R. W.

Austin, D. A.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. A. Austin, J. W. Cockburn, L. R. Wilson, A. B. Krysa, J. R. Roberts, "Room-temperature operation of ??7.5 µm surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Bahriz, M.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. A. Austin, J. W. Cockburn, L. R. Wilson, A. B. Krysa, J. R. Roberts, "Room-temperature operation of ??7.5 µm surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Beere, H. E.

A. Tredicucci, L. Mahler, T. Losco, J. Xu, C. Mauro, R. Köhler, H. E. Beere, D. A. Ritchie, and E. H.  Linfield, "Advances in THz quantum cascade lasers: fulfilling the application potential," Proc. SPIE 5738, 146 (2005).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156 (2002).
[CrossRef] [PubMed]

Bell, R. J.

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156 (2002).
[CrossRef] [PubMed]

Callebaut, H.

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at ? ? 100 ?m using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82, 1015 (2003).
[CrossRef]

Cao, J. C.

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 041112 (2007).
[CrossRef]

Capasso, F.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers with double metal-semiconductor waveguide resonators," Appl. Phys. Lett. 80, 3060 (2002).
[CrossRef]

Chen, K. N.

K. N. Chen, A. Fan, C. S. Tan, R. Reif, and C. Y. Yen, "Microstructure evolution and abnormal grain growth during copper wafer bonding," Appl. Phys. Lett. 81, 3774 (2002).
[CrossRef]

Cho, A. Y.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers with double metal-semiconductor waveguide resonators," Appl. Phys. Lett. 80, 3060 (2002).
[CrossRef]

Cockburn, J. W.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. A. Austin, J. W. Cockburn, L. R. Wilson, A. B. Krysa, J. R. Roberts, "Room-temperature operation of ??7.5 µm surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Colombelli, R.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. A. Austin, J. W. Cockburn, L. R. Wilson, A. B. Krysa, J. R. Roberts, "Room-temperature operation of ??7.5 µm surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers with double metal-semiconductor waveguide resonators," Appl. Phys. Lett. 80, 3060 (2002).
[CrossRef]

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156 (2002).
[CrossRef] [PubMed]

Faist, J.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, "Quantum cascade lasers operating from 1.2 to 1.6 THz," Appl. Phys. Lett. 91, 131122 (2007).
[CrossRef]

J. Faist, "Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits," Appl. Phys. Lett. 90, 253512 (2007).
[CrossRef]

Fan, A.

K. N. Chen, A. Fan, C. S. Tan, R. Reif, and C. Y. Yen, "Microstructure evolution and abnormal grain growth during copper wafer bonding," Appl. Phys. Lett. 81, 3774 (2002).
[CrossRef]

Fischer, M.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, "Quantum cascade lasers operating from 1.2 to 1.6 THz," Appl. Phys. Lett. 91, 131122 (2007).
[CrossRef]

Gmachl, C.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers with double metal-semiconductor waveguide resonators," Appl. Phys. Lett. 80, 3060 (2002).
[CrossRef]

Hoyler, N.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, "Quantum cascade lasers operating from 1.2 to 1.6 THz," Appl. Phys. Lett. 91, 131122 (2007).
[CrossRef]

Hu, Q.

S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331 (2005).
[CrossRef] [PubMed]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82, 1015 (2003).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at ? ? 100 ?m using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
[CrossRef]

Hwang, H. Y.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers with double metal-semiconductor waveguide resonators," Appl. Phys. Lett. 80, 3060 (2002).
[CrossRef]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156 (2002).
[CrossRef] [PubMed]

Kohen, S.

S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

Köhler, R.

A. Tredicucci, L. Mahler, T. Losco, J. Xu, C. Mauro, R. Köhler, H. E. Beere, D. A. Ritchie, and E. H.  Linfield, "Advances in THz quantum cascade lasers: fulfilling the application potential," Proc. SPIE 5738, 146 (2005).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156 (2002).
[CrossRef] [PubMed]

Krysa, A. B.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. A. Austin, J. W. Cockburn, L. R. Wilson, A. B. Krysa, J. R. Roberts, "Room-temperature operation of ??7.5 µm surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Kumar, S.

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331 (2005).
[CrossRef] [PubMed]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82, 1015 (2003).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at ? ? 100 ?m using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
[CrossRef]

Laframboise, S. R.

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 041112 (2007).
[CrossRef]

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156 (2002).
[CrossRef] [PubMed]

Linfield, E. H.

A. Tredicucci, L. Mahler, T. Losco, J. Xu, C. Mauro, R. Köhler, H. E. Beere, D. A. Ritchie, and E. H.  Linfield, "Advances in THz quantum cascade lasers: fulfilling the application potential," Proc. SPIE 5738, 146 (2005).
[CrossRef]

Liu, H. C.

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 041112 (2007).
[CrossRef]

Long, L. L.

Losco, T.

A. Tredicucci, L. Mahler, T. Losco, J. Xu, C. Mauro, R. Köhler, H. E. Beere, D. A. Ritchie, and E. H.  Linfield, "Advances in THz quantum cascade lasers: fulfilling the application potential," Proc. SPIE 5738, 146 (2005).
[CrossRef]

Luo, H.

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 041112 (2007).
[CrossRef]

Mahler, L.

A. Tredicucci, L. Mahler, T. Losco, J. Xu, C. Mauro, R. Köhler, H. E. Beere, D. A. Ritchie, and E. H.  Linfield, "Advances in THz quantum cascade lasers: fulfilling the application potential," Proc. SPIE 5738, 146 (2005).
[CrossRef]

Mauro, C.

A. Tredicucci, L. Mahler, T. Losco, J. Xu, C. Mauro, R. Köhler, H. E. Beere, D. A. Ritchie, and E. H.  Linfield, "Advances in THz quantum cascade lasers: fulfilling the application potential," Proc. SPIE 5738, 146 (2005).
[CrossRef]

Moreau, V.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. A. Austin, J. W. Cockburn, L. R. Wilson, A. B. Krysa, J. R. Roberts, "Room-temperature operation of ??7.5 µm surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Ordal, M. A.

Palomo, J.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. A. Austin, J. W. Cockburn, L. R. Wilson, A. B. Krysa, J. R. Roberts, "Room-temperature operation of ??7.5 µm surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Querry, M. R.

Reif, R.

K. N. Chen, A. Fan, C. S. Tan, R. Reif, and C. Y. Yen, "Microstructure evolution and abnormal grain growth during copper wafer bonding," Appl. Phys. Lett. 81, 3774 (2002).
[CrossRef]

Reno, J. L.

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331 (2005).
[CrossRef] [PubMed]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82, 1015 (2003).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at ? ? 100 ?m using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
[CrossRef]

Ritchie, D. A.

A. Tredicucci, L. Mahler, T. Losco, J. Xu, C. Mauro, R. Köhler, H. E. Beere, D. A. Ritchie, and E. H.  Linfield, "Advances in THz quantum cascade lasers: fulfilling the application potential," Proc. SPIE 5738, 146 (2005).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156 (2002).
[CrossRef] [PubMed]

Roberts, J. R.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. A. Austin, J. W. Cockburn, L. R. Wilson, A. B. Krysa, J. R. Roberts, "Room-temperature operation of ??7.5 µm surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156 (2002).
[CrossRef] [PubMed]

Scalari, G.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, "Quantum cascade lasers operating from 1.2 to 1.6 THz," Appl. Phys. Lett. 91, 131122 (2007).
[CrossRef]

Sivco, D. L.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers with double metal-semiconductor waveguide resonators," Appl. Phys. Lett. 80, 3060 (2002).
[CrossRef]

Tan, C. S.

K. N. Chen, A. Fan, C. S. Tan, R. Reif, and C. Y. Yen, "Microstructure evolution and abnormal grain growth during copper wafer bonding," Appl. Phys. Lett. 81, 3774 (2002).
[CrossRef]

Terazzi, R.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, "Quantum cascade lasers operating from 1.2 to 1.6 THz," Appl. Phys. Lett. 91, 131122 (2007).
[CrossRef]

Tredicucci, A.

A. Tredicucci, L. Mahler, T. Losco, J. Xu, C. Mauro, R. Köhler, H. E. Beere, D. A. Ritchie, and E. H.  Linfield, "Advances in THz quantum cascade lasers: fulfilling the application potential," Proc. SPIE 5738, 146 (2005).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156 (2002).
[CrossRef] [PubMed]

Unterrainer, K.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers with double metal-semiconductor waveguide resonators," Appl. Phys. Lett. 80, 3060 (2002).
[CrossRef]

Walther, C.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, "Quantum cascade lasers operating from 1.2 to 1.6 THz," Appl. Phys. Lett. 91, 131122 (2007).
[CrossRef]

Wasilewski, Z. R.

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 041112 (2007).
[CrossRef]

Williams, B. S.

B. S. Williams, "Terahertz Quantum Cascade Lasers," Nature Photon. 1, 517-525 (2007).
[CrossRef]

S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331 (2005).
[CrossRef] [PubMed]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82, 1015 (2003).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at ? ? 100 ?m using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
[CrossRef]

Wilson, L. R.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. A. Austin, J. W. Cockburn, L. R. Wilson, A. B. Krysa, J. R. Roberts, "Room-temperature operation of ??7.5 µm surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Xu, J.

A. Tredicucci, L. Mahler, T. Losco, J. Xu, C. Mauro, R. Köhler, H. E. Beere, D. A. Ritchie, and E. H.  Linfield, "Advances in THz quantum cascade lasers: fulfilling the application potential," Proc. SPIE 5738, 146 (2005).
[CrossRef]

Yen, C. Y.

K. N. Chen, A. Fan, C. S. Tan, R. Reif, and C. Y. Yen, "Microstructure evolution and abnormal grain growth during copper wafer bonding," Appl. Phys. Lett. 81, 3774 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (8)

K. N. Chen, A. Fan, C. S. Tan, R. Reif, and C. Y. Yen, "Microstructure evolution and abnormal grain growth during copper wafer bonding," Appl. Phys. Lett. 81, 3774 (2002).
[CrossRef]

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. A. Austin, J. W. Cockburn, L. R. Wilson, A. B. Krysa, J. R. Roberts, "Room-temperature operation of ??7.5 µm surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 041112 (2007).
[CrossRef]

J. Faist, "Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits," Appl. Phys. Lett. 90, 253512 (2007).
[CrossRef]

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, "Quantum cascade lasers operating from 1.2 to 1.6 THz," Appl. Phys. Lett. 91, 131122 (2007).
[CrossRef]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers with double metal-semiconductor waveguide resonators," Appl. Phys. Lett. 80, 3060 (2002).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82, 1015 (2003).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at ? ? 100 ?m using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
[CrossRef]

J. Appl. Phys. (1)

S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156 (2002).
[CrossRef] [PubMed]

Nature Photon. (1)

B. S. Williams, "Terahertz Quantum Cascade Lasers," Nature Photon. 1, 517-525 (2007).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

A. Tredicucci, L. Mahler, T. Losco, J. Xu, C. Mauro, R. Köhler, H. E. Beere, D. A. Ritchie, and E. H.  Linfield, "Advances in THz quantum cascade lasers: fulfilling the application potential," Proc. SPIE 5738, 146 (2005).
[CrossRef]

Other (3)

S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, Q. Hu, J. L. Reno, Z. R. Wasilewski, H. C. Liu, "Terahertz quantum-cascade lasers with resonant-phonon depopulation: high temperature and low-frequency operation," in Proceedings of the Ninth International Conference on Intersubband Transitions in Quantum Wells, D. Indjin, Z. Ikonic, P. Harrison, and R.W. Kelsall, eds. (University of Leeds, Leeds, U.K., 2007), T16.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

"Electrical Resistivity of Pure Metals," in CRC Handbook of Chemistry and Physics, 88th Edition (Internet Version 2008), D. R. Lide, ed. (CRC Press/Taylor and Francis, Boca Raton, Fla., 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Calculated waveguide losses for different wavelengths in a metal-metal waveguide assuming a “lossless” active region. (b) Calculated waveguide losses in a metal-metal waveguide assuming a realistic active region design with an average doping of 5×1015 cm-3. We note that long-wavelength, λ>200 µm, QCLs typically use lower doped active regions.

Fig. 2.
Fig. 2.

Calculated temperature dependence of waveguide losses for 100 µm wavelength in a metal-metal waveguide assuming a “lossless” active region. Optical constants of metals were estimated using Eq. (1). The data for temperatures below 80 K is very sensitive to the purity of metals and is not shown.

Fig. 3.
Fig. 3.

Conduction band diagrams of (a) three- and (b) four-quantum-well resonant-phonon active region designs, reported in Refs. [16] and [4] respectively. A single quantum-cascade stage is marked by a box. Both structures utilized the GaAs/Al0.15Ga0.85As material system. The layer sequences, starting from the injection barrier, are 48/96/20/74/42/161 Å for (a) and 49/79/25/66/41/156/33/90 Å for (b). Laser transitions are shown with arrows. Also shown are the transition dipole moments and emission energies for the laser transitions, calculated for single isolated modules of the structures. The four-quantum-well resonant-phonon active region design is shown for reference only; it is not used in our experiments.

Fig. 4.
Fig. 4.

(a). Current density-voltage characteristic and an emission spectrum (inset) of a representative device processed with a gold metal-metal waveguide. Devices processed with a copper metal-metal waveguides displayed similar current density-voltage characteristics and emission spectra. (b) Light intensity-current density (LI) characteristics of the best-performing device with a gold metal-metal waveguide, 1.3mm-long and 150µm-wide. Inset: the LI characteristics of the device close to the maximum operating temperature of 168 K. The data are not corrected for an estimated 10% power collection efficiency.

Fig. 5.
Fig. 5.

(a). The LI characteristics of a 1.4mm-long and 125µm-wide device with a copper metal-metal waveguide. Inset: the LI characteristics of the device close to the maximum operating temperature of 178 K. The data are not corrected for an estimated 10% power collection efficiency. Dips in the LI characteristics at current density ~1150 A/cm2 are due to some of the laser emission lines coincide with atmospheric absorption lines. (b) Threshold current density as a function of temperature for the device in (a). Inset: the LI characteristics of another device with a copper metal-metal waveguide, 1.6mm-long and 100µm-wide, close to its maximum operating temperature of 177 K.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Re ( n ) Im ( n ) 2 π σ ω
T max ( C u ) T max ( A u ) = T 0 × In ( α ( A u ) α ( C u ) )

Metrics