Abstract

This paper reports the main characteristics of the Stokes spectra for typical pumped and unpumped Erbium-Ytterbium doped fibers. Doped fibers show shorter Brillouin shifts and their spectra are up to 1.6 times broader than undoped fibers. Those spectra are composed of several peaks originating from several longitudinal acoustic modes. The effective Brillouin gain of the secondary modes can be as large as 20% of the main peak gain. They can merge into a more complex structure for the largest cores. Simulations allow to relate these characteristics to the influence of codoping and index profile inhomogeneity. An additional broadening of the Stokes spectrum in pumped fibers is reported and attributed to thermal effects.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yeniay, J.-M. Delavaux, and J. Toulouse, "Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers," J. Lightwave Technol. 20, 1425-1432 (2002).
    [CrossRef]
  2. G. Kulcsar, Y. Jaouën, G. Canat, and E. Olmedo, "Multiple-stokes Stimulated Brillouin Scattering generation in pulsed high-power double-cladding Er3+-Yb3+ codoped fiber amplifier, " IEEE Photon. Technol. Lett. 15, 801-803 (2003).
    [CrossRef]
  3. V. I. Kovalev and R. G. Harrisson, "Analytic modeling of Brillouin gain in rare-earth doped fiber amplifiers with high-power single-frequency signals," Proc. SPIE 5709, 142-146 (2005).
    [CrossRef]
  4. Y. Jeong, J. Nilsson, J. K. Sahu,  et al., "Single-frequency, polarized ytterbium-doped fiber MOPA source with 264 W output power," Conference on Lasers and Electro-Optics, 2004 (CLEO) 2, 1065-1066 (2004).
  5. C. A. S. de Oliveira and C. K. Jen, "Fiber Brillouin laser with two cascaded fibers of different Brillouin frequency shifts," Microwave Conference/Brazil, 1993., SBMO International 2, 697-702 (1993).
  6. G. Vienne, "Fabrication and characterization of Ytterbium:Erbium codoped phosphosilicate fibers for optical amplifiers and lasers," Ph.D. dissertation (University of Southampton, Southampton, 1996).
  7. A. Kobyakov, S. Kumar, D. Chowdhury,  et al., "Design concept for optical fibers with enhanced SBS threshold," Opt. Express 13, 5338-5346 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-14-5338.
    [CrossRef] [PubMed]
  8. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, "Simulating and designing Brillouin gain spectrum in single-mode fibers," J. Lightwave Technol. 22,631-639 (2004).
    [CrossRef]
  9. A. B. Ruffin, M. -J. Li, X. Chen, A. Kobyakov, and F. Annunziata, "Brillouin gain analysis for fibers with different refractive indices," Opt. Lett. 30, 3123-3125 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-23-3123
    [CrossRef] [PubMed]
  10. M. Nikles, L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
    [CrossRef]
  11. G. Canat, Y. Jaouën, and J.-C. Mollier, "Performance and limitations of high brightness Er3+-Yb3+ fiber sources," C.R. Physique 7, 177-186 (2007).
    [CrossRef]
  12. S. Le Floch and P. Cambon, "Theoretical evaluation of the Brillouin threshold and the steady-state Brillouin equations in standard single-mode optical fibers," J. Opt. Soc. Am. A 20, 1132-1137 (2003)
    [CrossRef]
  13. K. Shiraki, M. Ohashi, and M. Tateda, "SBS threshold of a fiber with a Brillouin frequency shift distribution," J. Lightwave Technol. 14,50-57 (1996)
    [CrossRef]

2007 (1)

G. Canat, Y. Jaouën, and J.-C. Mollier, "Performance and limitations of high brightness Er3+-Yb3+ fiber sources," C.R. Physique 7, 177-186 (2007).
[CrossRef]

2005 (3)

2004 (1)

2003 (2)

G. Kulcsar, Y. Jaouën, G. Canat, and E. Olmedo, "Multiple-stokes Stimulated Brillouin Scattering generation in pulsed high-power double-cladding Er3+-Yb3+ codoped fiber amplifier, " IEEE Photon. Technol. Lett. 15, 801-803 (2003).
[CrossRef]

S. Le Floch and P. Cambon, "Theoretical evaluation of the Brillouin threshold and the steady-state Brillouin equations in standard single-mode optical fibers," J. Opt. Soc. Am. A 20, 1132-1137 (2003)
[CrossRef]

2002 (1)

1997 (1)

M. Nikles, L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

1996 (1)

K. Shiraki, M. Ohashi, and M. Tateda, "SBS threshold of a fiber with a Brillouin frequency shift distribution," J. Lightwave Technol. 14,50-57 (1996)
[CrossRef]

Annunziata, F.

Cambon, P.

Canat, G.

G. Canat, Y. Jaouën, and J.-C. Mollier, "Performance and limitations of high brightness Er3+-Yb3+ fiber sources," C.R. Physique 7, 177-186 (2007).
[CrossRef]

G. Kulcsar, Y. Jaouën, G. Canat, and E. Olmedo, "Multiple-stokes Stimulated Brillouin Scattering generation in pulsed high-power double-cladding Er3+-Yb3+ codoped fiber amplifier, " IEEE Photon. Technol. Lett. 15, 801-803 (2003).
[CrossRef]

Chen, X.

Chowdhury, D.

Chujo, W.

Delavaux, J.-M.

Harrisson, R. G.

V. I. Kovalev and R. G. Harrisson, "Analytic modeling of Brillouin gain in rare-earth doped fiber amplifiers with high-power single-frequency signals," Proc. SPIE 5709, 142-146 (2005).
[CrossRef]

Jaouën, Y.

G. Canat, Y. Jaouën, and J.-C. Mollier, "Performance and limitations of high brightness Er3+-Yb3+ fiber sources," C.R. Physique 7, 177-186 (2007).
[CrossRef]

G. Kulcsar, Y. Jaouën, G. Canat, and E. Olmedo, "Multiple-stokes Stimulated Brillouin Scattering generation in pulsed high-power double-cladding Er3+-Yb3+ codoped fiber amplifier, " IEEE Photon. Technol. Lett. 15, 801-803 (2003).
[CrossRef]

Kobyakov, A.

Kovalev, V. I.

V. I. Kovalev and R. G. Harrisson, "Analytic modeling of Brillouin gain in rare-earth doped fiber amplifiers with high-power single-frequency signals," Proc. SPIE 5709, 142-146 (2005).
[CrossRef]

Koyamada, Y.

Kulcsar, G.

G. Kulcsar, Y. Jaouën, G. Canat, and E. Olmedo, "Multiple-stokes Stimulated Brillouin Scattering generation in pulsed high-power double-cladding Er3+-Yb3+ codoped fiber amplifier, " IEEE Photon. Technol. Lett. 15, 801-803 (2003).
[CrossRef]

Kumar, S.

Le Floch, S.

Li, M. -J.

Mollier, J.-C.

G. Canat, Y. Jaouën, and J.-C. Mollier, "Performance and limitations of high brightness Er3+-Yb3+ fiber sources," C.R. Physique 7, 177-186 (2007).
[CrossRef]

Nakamura, S.

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

Ohashi, M.

K. Shiraki, M. Ohashi, and M. Tateda, "SBS threshold of a fiber with a Brillouin frequency shift distribution," J. Lightwave Technol. 14,50-57 (1996)
[CrossRef]

Olmedo, E.

G. Kulcsar, Y. Jaouën, G. Canat, and E. Olmedo, "Multiple-stokes Stimulated Brillouin Scattering generation in pulsed high-power double-cladding Er3+-Yb3+ codoped fiber amplifier, " IEEE Photon. Technol. Lett. 15, 801-803 (2003).
[CrossRef]

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

Ruffin, A. B.

Sato, S.

Shiraki, K.

K. Shiraki, M. Ohashi, and M. Tateda, "SBS threshold of a fiber with a Brillouin frequency shift distribution," J. Lightwave Technol. 14,50-57 (1996)
[CrossRef]

Sotobayashi, H.

Tateda, M.

K. Shiraki, M. Ohashi, and M. Tateda, "SBS threshold of a fiber with a Brillouin frequency shift distribution," J. Lightwave Technol. 14,50-57 (1996)
[CrossRef]

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

Toulouse, J.

Yeniay, A.

C.R. Physique (1)

G. Canat, Y. Jaouën, and J.-C. Mollier, "Performance and limitations of high brightness Er3+-Yb3+ fiber sources," C.R. Physique 7, 177-186 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Kulcsar, Y. Jaouën, G. Canat, and E. Olmedo, "Multiple-stokes Stimulated Brillouin Scattering generation in pulsed high-power double-cladding Er3+-Yb3+ codoped fiber amplifier, " IEEE Photon. Technol. Lett. 15, 801-803 (2003).
[CrossRef]

J. Lightwave Technol. (4)

A. Yeniay, J.-M. Delavaux, and J. Toulouse, "Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers," J. Lightwave Technol. 20, 1425-1432 (2002).
[CrossRef]

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, "Simulating and designing Brillouin gain spectrum in single-mode fibers," J. Lightwave Technol. 22,631-639 (2004).
[CrossRef]

M. Nikles, L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

K. Shiraki, M. Ohashi, and M. Tateda, "SBS threshold of a fiber with a Brillouin frequency shift distribution," J. Lightwave Technol. 14,50-57 (1996)
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

V. I. Kovalev and R. G. Harrisson, "Analytic modeling of Brillouin gain in rare-earth doped fiber amplifiers with high-power single-frequency signals," Proc. SPIE 5709, 142-146 (2005).
[CrossRef]

Other (3)

Y. Jeong, J. Nilsson, J. K. Sahu,  et al., "Single-frequency, polarized ytterbium-doped fiber MOPA source with 264 W output power," Conference on Lasers and Electro-Optics, 2004 (CLEO) 2, 1065-1066 (2004).

C. A. S. de Oliveira and C. K. Jen, "Fiber Brillouin laser with two cascaded fibers of different Brillouin frequency shifts," Microwave Conference/Brazil, 1993., SBMO International 2, 697-702 (1993).

G. Vienne, "Fabrication and characterization of Ytterbium:Erbium codoped phosphosilicate fibers for optical amplifiers and lasers," Ph.D. dissertation (University of Southampton, Southampton, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Experimental set-up for Brillouin gain spectrum measurement (DFB: DFB Laser, FUT: Fiber under test, PC: Polarization controller, DET: Photodetector, LNA: Low noise amplifier, ESA: Electrical spectrum analyzer)

Fig. 2.
Fig. 2.

Stokes spectrum of unpumped fibers A, C and D.

Fig. 3.
Fig. 3.

(a) Simplified (dashed curve) and measured (bold solid curve) refractive index profile from an Er-Yb doped fiber similar to A (b) Velocity profile used for the simulation of fiber A computed from the refractive index profile. The fundamental optical (a) and acoustic modes (b) are showed (solid curves).

Fig. 4.
Fig. 4.

The three lowest order acoustic modes (L0m) (blue) and the fundamental optical mode (LP01) (red) of fiber A.

Fig. 5.
Fig. 5.

Simulated (black) and measured (red) Stokes spectrum of the unpumped fiber A. The propagation frequency of the computed guided acoustic modes L0m are indicated by arrows.

Fig. 6.
Fig. 6.

Index profile and fundamental optical mode of the fiber C.

Fig. 7.
Fig. 7.

Simulated (black) and measured (red) Stokes spectrum of the unpumped fiber C. The propagation frequency of the computed guided acoustic modes L0m are indicated by arrows.

Fig. 8.
Fig. 8.

Stokes spectrum of fiber D measured with 975 nm pumping for several pump power (0W; 1.9 W; 3.8 W; 6.4 W; 9.6 W).

Fig. 9.
Fig. 9.

(a) Measurement of the Stokes spectrum of fiber D with 0 W and 9.6 W pump power. (b) Modeling of the Stokes spectrum with a 70°C increase.

Fig. 10.
Fig. 10.

Evolution of the Stokes spectrum maximum with the temperature gradient along the fiber for several values of the Brillouin gain linewidth (30 MHz, black curve; 50 MHz, red curve; 80 MHz, green curve).

Tables (1)

Tables Icon

Table 1. Summary of the experimental results using a signal at 1552 nm for fibers with different diameters (2a), numerical apertures (NA), Brillouin frequency of the different peaks νB and linewidth ΓB. The Stokes width of fiber D is ΓB/2π=48 MHz unpumped and is ΓB/2π=82 MHz when pumped (cf. Fig. 5)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

( 2 r 2 + 1 r r ) u k + ( Ω B 2 V L 2 q 2 ) u k = 0 .
Δ V L = ( Δ V L Δ W ) P 205 Δ W ( P 2 0 5 ) + ( Δ V L Δ W ) Al 203 Δ W ( Al 2 0 3 ) ( Δ n Δ W ) P 205 Δ W ( P 2 0 5 ) + ( Δ n Δ W ) Al 203 Δ W ( Al 2 0 3 ) Δ n = 12.7 Δ n
l u ao ( k ) = ( fiber F 01 ( x , y ) 2 u k ( x , y ) d x d y ) 2 ( fiber F 01 ( x , y ) 4 d x d y ) ( fiber u k ( x , y ) 2 d x d y ) 1
P ( ω ) = Σ k = 0 N g B l u ao ( k ) 1 + ( 2 ( ω Ω B ( k ) ) Γ B ) 2 .
g B eff ( υ , T ) = g B eff ( υ Δ υ B Δ T ( T T 0 ) , T 0 ) .
d P stokes dz = g P stokes C g B eff ( υ , T ( z ) ) A eff P signal .
C = k T υ s Γ B 4 υ B .

Metrics