Abstract

Since blood flow is tightly coupled to the health status of biological tissue, several instruments have been developed to monitor blood flow and perfusion dynamics. One such instrument is laser speckle imaging. The goal of this study was to evaluate the use of two velocity distribution assumptions (Lorentzian- and Gaussian-based) to calculate speckle flow index (SFI) values. When the normalized autocorrelation function for the Lorentzian and Gaussian velocity distributions satisfy the same definition of correlation time, then the same velocity range is predicted for low speckle contrast (0<C<0.6) and predict different flow velocity range for high contrast. Our derived equations form the basis for simplified calculations of SFI values.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Dunn, T. Bolay, M. A. Moskowitz and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
    [CrossRef] [PubMed]
  2. S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab 25, 830-841 (2005).
    [CrossRef] [PubMed]
  3. H. W. Ren, Z. H. Ding, Y. H. Zhao, J. J. Miao, J. S. Nelson and Z. P. Chen, "Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin," Opt. Lett. 27, 1702-1704 (2002).
    [CrossRef]
  4. Z. P. Chen, T. E. Milner, D. Dave and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997).
    [CrossRef] [PubMed]
  5. A. F. Fercher and J. D. Briers, "Flow Visualization by Means of Single-Exposure Speckle Photography," Opt. Commun. 37, 326-330 (1981).
    [CrossRef]
  6. J. D. Briers and S. Webster, "Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields," Opt. Commun. 116, 36-42 (1995).
    [CrossRef]
  7. J. D. Briers, G. Richards and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
    [CrossRef]
  8. H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
    [CrossRef] [PubMed]
  9. H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, W. H. Luo and H. Gong, "Hyperosmotic chemical agent's effect on in vivo cerebral blood flow revealed by laser speckle," Appl. Opt. 43, 5772-5777 (2004).
    [CrossRef] [PubMed]
  10. S. Yuan, A. Devor, D. A. Boas and A. K. Dunn, "Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging," Appl. Opt. 44, 1823-1830 (2005).
    [CrossRef] [PubMed]
  11. A. K. Dunn, A. Devor, A. M. Dale and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," Neuroimage 27, 279-290 (2005).
    [CrossRef] [PubMed]
  12. H. Bolay, U. Reuter, A.K. Dunn, Z.H. Huang, D.A. Boas, M.A. Moskowitz, "Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model," Nat. Med. 8, 136-142 (2002).
    [CrossRef] [PubMed]
  13. M. Hirao, H. Oku, W. Goto, T. Sugiyama, T. Kobayashi and T. Ikeda, "Effects of adenosine on optic nerve head circulation in rabbits," Exp. Eye Res. 79, 729-735 (2004).
    [CrossRef] [PubMed]
  14. K. R. Forrester, J. Tulip, C. Leonard, C. Stewart and R. C. Bray, "A laser speckle imaging technique for measuring tissue perfusion," IEEE Trans. Biomed. Eng. 51, 2074-2084 (2004).
    [CrossRef] [PubMed]
  15. B. Choi, N. M. Kang and J. S. Nelson, "Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skinfold model," Microvasc. Res. 68, 143-146 (2004).
    [CrossRef] [PubMed]
  16. T. K. Smith, B. Choi, J. C. Ramirez-San-Juan, J. S. Nelson, K. Osann and K. M. Kelly, "Microvascular blood flow dynamics associated with photodynamic therapy and pulsed dye laser irradiation," Lasers Surg. Med.,  38, 532-539 (2006).
    [CrossRef] [PubMed]
  17. B. Choi, J. C. Ramirez-San-Juan, J. Lotfi, J. S. Nelson, "Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics," J. Biomed. Opt. 11, 041129 (2006).
    [CrossRef] [PubMed]
  18. H. Cheng and T. Q. Duong, "Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging," Opt. Lett. 15, 2188-2190 (2007).
    [CrossRef]
  19. P. Zakharov, A. Völker, A. Buck, B. Weber and F. Scheffold, "Quantitative modeling of Laser Speckle Imaging," Opt. Lett. 31, 3465-3467 (2006).
    [CrossRef] [PubMed]
  20. J. W. Goodman, Statistical Optics (John Wiley & Sons, 1985).
  21. J. W. Goodman, "Some effects of target-induced scintillation on optical radar performance," Proc. IEEE,  53, 1688 (1965).
    [CrossRef]
  22. J. D. Briers and A. F. Fercher, "A laser speckle technique for the visualization of retinal blood flow," Proc. SPIE 369, 22-28 (1982).
  23. R. Bracewell, The Fourier transform and its applications (Mc Graw-Hill, 1965).

2007

H. Cheng and T. Q. Duong, "Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging," Opt. Lett. 15, 2188-2190 (2007).
[CrossRef]

2006

P. Zakharov, A. Völker, A. Buck, B. Weber and F. Scheffold, "Quantitative modeling of Laser Speckle Imaging," Opt. Lett. 31, 3465-3467 (2006).
[CrossRef] [PubMed]

T. K. Smith, B. Choi, J. C. Ramirez-San-Juan, J. S. Nelson, K. Osann and K. M. Kelly, "Microvascular blood flow dynamics associated with photodynamic therapy and pulsed dye laser irradiation," Lasers Surg. Med.,  38, 532-539 (2006).
[CrossRef] [PubMed]

B. Choi, J. C. Ramirez-San-Juan, J. Lotfi, J. S. Nelson, "Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics," J. Biomed. Opt. 11, 041129 (2006).
[CrossRef] [PubMed]

2005

S. Yuan, A. Devor, D. A. Boas and A. K. Dunn, "Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging," Appl. Opt. 44, 1823-1830 (2005).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," Neuroimage 27, 279-290 (2005).
[CrossRef] [PubMed]

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab 25, 830-841 (2005).
[CrossRef] [PubMed]

2004

M. Hirao, H. Oku, W. Goto, T. Sugiyama, T. Kobayashi and T. Ikeda, "Effects of adenosine on optic nerve head circulation in rabbits," Exp. Eye Res. 79, 729-735 (2004).
[CrossRef] [PubMed]

K. R. Forrester, J. Tulip, C. Leonard, C. Stewart and R. C. Bray, "A laser speckle imaging technique for measuring tissue perfusion," IEEE Trans. Biomed. Eng. 51, 2074-2084 (2004).
[CrossRef] [PubMed]

B. Choi, N. M. Kang and J. S. Nelson, "Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skinfold model," Microvasc. Res. 68, 143-146 (2004).
[CrossRef] [PubMed]

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, W. H. Luo and H. Gong, "Hyperosmotic chemical agent's effect on in vivo cerebral blood flow revealed by laser speckle," Appl. Opt. 43, 5772-5777 (2004).
[CrossRef] [PubMed]

2003

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

2002

2001

A. K. Dunn, T. Bolay, M. A. Moskowitz and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

1999

J. D. Briers, G. Richards and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

1997

1995

J. D. Briers and S. Webster, "Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields," Opt. Commun. 116, 36-42 (1995).
[CrossRef]

1982

J. D. Briers and A. F. Fercher, "A laser speckle technique for the visualization of retinal blood flow," Proc. SPIE 369, 22-28 (1982).

1981

A. F. Fercher and J. D. Briers, "Flow Visualization by Means of Single-Exposure Speckle Photography," Opt. Commun. 37, 326-330 (1981).
[CrossRef]

1965

J. W. Goodman, "Some effects of target-induced scintillation on optical radar performance," Proc. IEEE,  53, 1688 (1965).
[CrossRef]

Boas, D. A.

S. Yuan, A. Devor, D. A. Boas and A. K. Dunn, "Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging," Appl. Opt. 44, 1823-1830 (2005).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," Neuroimage 27, 279-290 (2005).
[CrossRef] [PubMed]

A. K. Dunn, T. Bolay, M. A. Moskowitz and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

Boas, D.A.

H. Bolay, U. Reuter, A.K. Dunn, Z.H. Huang, D.A. Boas, M.A. Moskowitz, "Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model," Nat. Med. 8, 136-142 (2002).
[CrossRef] [PubMed]

Bolay, H.

H. Bolay, U. Reuter, A.K. Dunn, Z.H. Huang, D.A. Boas, M.A. Moskowitz, "Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model," Nat. Med. 8, 136-142 (2002).
[CrossRef] [PubMed]

Bolay, T.

A. K. Dunn, T. Bolay, M. A. Moskowitz and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

Bray, R. C.

K. R. Forrester, J. Tulip, C. Leonard, C. Stewart and R. C. Bray, "A laser speckle imaging technique for measuring tissue perfusion," IEEE Trans. Biomed. Eng. 51, 2074-2084 (2004).
[CrossRef] [PubMed]

Briers, J. D.

J. D. Briers, G. Richards and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

J. D. Briers and S. Webster, "Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields," Opt. Commun. 116, 36-42 (1995).
[CrossRef]

J. D. Briers and A. F. Fercher, "A laser speckle technique for the visualization of retinal blood flow," Proc. SPIE 369, 22-28 (1982).

A. F. Fercher and J. D. Briers, "Flow Visualization by Means of Single-Exposure Speckle Photography," Opt. Commun. 37, 326-330 (1981).
[CrossRef]

Buck, A.

Cen, J.

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

Chen, S. B.

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, W. H. Luo and H. Gong, "Hyperosmotic chemical agent's effect on in vivo cerebral blood flow revealed by laser speckle," Appl. Opt. 43, 5772-5777 (2004).
[CrossRef] [PubMed]

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

Chen, Z. P.

Cheng, H.

H. Cheng and T. Q. Duong, "Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging," Opt. Lett. 15, 2188-2190 (2007).
[CrossRef]

Cheng, H. Y.

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, W. H. Luo and H. Gong, "Hyperosmotic chemical agent's effect on in vivo cerebral blood flow revealed by laser speckle," Appl. Opt. 43, 5772-5777 (2004).
[CrossRef] [PubMed]

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

Choi, B.

T. K. Smith, B. Choi, J. C. Ramirez-San-Juan, J. S. Nelson, K. Osann and K. M. Kelly, "Microvascular blood flow dynamics associated with photodynamic therapy and pulsed dye laser irradiation," Lasers Surg. Med.,  38, 532-539 (2006).
[CrossRef] [PubMed]

B. Choi, J. C. Ramirez-San-Juan, J. Lotfi, J. S. Nelson, "Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics," J. Biomed. Opt. 11, 041129 (2006).
[CrossRef] [PubMed]

B. Choi, N. M. Kang and J. S. Nelson, "Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skinfold model," Microvasc. Res. 68, 143-146 (2004).
[CrossRef] [PubMed]

Dale, A. M.

A. K. Dunn, A. Devor, A. M. Dale and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," Neuroimage 27, 279-290 (2005).
[CrossRef] [PubMed]

Dave, D.

Devor, A.

S. Yuan, A. Devor, D. A. Boas and A. K. Dunn, "Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging," Appl. Opt. 44, 1823-1830 (2005).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," Neuroimage 27, 279-290 (2005).
[CrossRef] [PubMed]

Ding, Z. H.

Dunn, A. K.

S. Yuan, A. Devor, D. A. Boas and A. K. Dunn, "Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging," Appl. Opt. 44, 1823-1830 (2005).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," Neuroimage 27, 279-290 (2005).
[CrossRef] [PubMed]

A. K. Dunn, T. Bolay, M. A. Moskowitz and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

Dunn, A.K.

H. Bolay, U. Reuter, A.K. Dunn, Z.H. Huang, D.A. Boas, M.A. Moskowitz, "Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model," Nat. Med. 8, 136-142 (2002).
[CrossRef] [PubMed]

Duong, T. Q.

H. Cheng and T. Q. Duong, "Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging," Opt. Lett. 15, 2188-2190 (2007).
[CrossRef]

Fercher, A. F.

J. D. Briers and A. F. Fercher, "A laser speckle technique for the visualization of retinal blood flow," Proc. SPIE 369, 22-28 (1982).

A. F. Fercher and J. D. Briers, "Flow Visualization by Means of Single-Exposure Speckle Photography," Opt. Commun. 37, 326-330 (1981).
[CrossRef]

Forrester, K. R.

K. R. Forrester, J. Tulip, C. Leonard, C. Stewart and R. C. Bray, "A laser speckle imaging technique for measuring tissue perfusion," IEEE Trans. Biomed. Eng. 51, 2074-2084 (2004).
[CrossRef] [PubMed]

Gong, H.

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, W. H. Luo and H. Gong, "Hyperosmotic chemical agent's effect on in vivo cerebral blood flow revealed by laser speckle," Appl. Opt. 43, 5772-5777 (2004).
[CrossRef] [PubMed]

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman, "Some effects of target-induced scintillation on optical radar performance," Proc. IEEE,  53, 1688 (1965).
[CrossRef]

Goto, W.

M. Hirao, H. Oku, W. Goto, T. Sugiyama, T. Kobayashi and T. Ikeda, "Effects of adenosine on optic nerve head circulation in rabbits," Exp. Eye Res. 79, 729-735 (2004).
[CrossRef] [PubMed]

Guiou, M. W.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab 25, 830-841 (2005).
[CrossRef] [PubMed]

He, X. W.

J. D. Briers, G. Richards and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

Hirao, M.

M. Hirao, H. Oku, W. Goto, T. Sugiyama, T. Kobayashi and T. Ikeda, "Effects of adenosine on optic nerve head circulation in rabbits," Exp. Eye Res. 79, 729-735 (2004).
[CrossRef] [PubMed]

Huang, Z.H.

H. Bolay, U. Reuter, A.K. Dunn, Z.H. Huang, D.A. Boas, M.A. Moskowitz, "Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model," Nat. Med. 8, 136-142 (2002).
[CrossRef] [PubMed]

Ikeda, T.

M. Hirao, H. Oku, W. Goto, T. Sugiyama, T. Kobayashi and T. Ikeda, "Effects of adenosine on optic nerve head circulation in rabbits," Exp. Eye Res. 79, 729-735 (2004).
[CrossRef] [PubMed]

Kang, N. M.

B. Choi, N. M. Kang and J. S. Nelson, "Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skinfold model," Microvasc. Res. 68, 143-146 (2004).
[CrossRef] [PubMed]

Kelly, K. M.

T. K. Smith, B. Choi, J. C. Ramirez-San-Juan, J. S. Nelson, K. Osann and K. M. Kelly, "Microvascular blood flow dynamics associated with photodynamic therapy and pulsed dye laser irradiation," Lasers Surg. Med.,  38, 532-539 (2006).
[CrossRef] [PubMed]

Kobayashi, T.

M. Hirao, H. Oku, W. Goto, T. Sugiyama, T. Kobayashi and T. Ikeda, "Effects of adenosine on optic nerve head circulation in rabbits," Exp. Eye Res. 79, 729-735 (2004).
[CrossRef] [PubMed]

Leonard, C.

K. R. Forrester, J. Tulip, C. Leonard, C. Stewart and R. C. Bray, "A laser speckle imaging technique for measuring tissue perfusion," IEEE Trans. Biomed. Eng. 51, 2074-2084 (2004).
[CrossRef] [PubMed]

Lotfi, J.

B. Choi, J. C. Ramirez-San-Juan, J. Lotfi, J. S. Nelson, "Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics," J. Biomed. Opt. 11, 041129 (2006).
[CrossRef] [PubMed]

Luo, Q. M.

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, W. H. Luo and H. Gong, "Hyperosmotic chemical agent's effect on in vivo cerebral blood flow revealed by laser speckle," Appl. Opt. 43, 5772-5777 (2004).
[CrossRef] [PubMed]

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

Luo, W. H.

Miao, J. J.

Milner, T. E.

Moskowitz, M. A.

A. K. Dunn, T. Bolay, M. A. Moskowitz and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

Moskowitz, M.A.

H. Bolay, U. Reuter, A.K. Dunn, Z.H. Huang, D.A. Boas, M.A. Moskowitz, "Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model," Nat. Med. 8, 136-142 (2002).
[CrossRef] [PubMed]

Nelson, J. S.

T. K. Smith, B. Choi, J. C. Ramirez-San-Juan, J. S. Nelson, K. Osann and K. M. Kelly, "Microvascular blood flow dynamics associated with photodynamic therapy and pulsed dye laser irradiation," Lasers Surg. Med.,  38, 532-539 (2006).
[CrossRef] [PubMed]

B. Choi, J. C. Ramirez-San-Juan, J. Lotfi, J. S. Nelson, "Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics," J. Biomed. Opt. 11, 041129 (2006).
[CrossRef] [PubMed]

B. Choi, N. M. Kang and J. S. Nelson, "Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skinfold model," Microvasc. Res. 68, 143-146 (2004).
[CrossRef] [PubMed]

H. W. Ren, Z. H. Ding, Y. H. Zhao, J. J. Miao, J. S. Nelson and Z. P. Chen, "Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin," Opt. Lett. 27, 1702-1704 (2002).
[CrossRef]

Z. P. Chen, T. E. Milner, D. Dave and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997).
[CrossRef] [PubMed]

Nemoto, M.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab 25, 830-841 (2005).
[CrossRef] [PubMed]

Oku, H.

M. Hirao, H. Oku, W. Goto, T. Sugiyama, T. Kobayashi and T. Ikeda, "Effects of adenosine on optic nerve head circulation in rabbits," Exp. Eye Res. 79, 729-735 (2004).
[CrossRef] [PubMed]

Osann, K.

T. K. Smith, B. Choi, J. C. Ramirez-San-Juan, J. S. Nelson, K. Osann and K. M. Kelly, "Microvascular blood flow dynamics associated with photodynamic therapy and pulsed dye laser irradiation," Lasers Surg. Med.,  38, 532-539 (2006).
[CrossRef] [PubMed]

Ramirez-San-Juan, J. C.

T. K. Smith, B. Choi, J. C. Ramirez-San-Juan, J. S. Nelson, K. Osann and K. M. Kelly, "Microvascular blood flow dynamics associated with photodynamic therapy and pulsed dye laser irradiation," Lasers Surg. Med.,  38, 532-539 (2006).
[CrossRef] [PubMed]

B. Choi, J. C. Ramirez-San-Juan, J. Lotfi, J. S. Nelson, "Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics," J. Biomed. Opt. 11, 041129 (2006).
[CrossRef] [PubMed]

Ren, H. W.

Reuter, U.

H. Bolay, U. Reuter, A.K. Dunn, Z.H. Huang, D.A. Boas, M.A. Moskowitz, "Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model," Nat. Med. 8, 136-142 (2002).
[CrossRef] [PubMed]

Richards, G.

J. D. Briers, G. Richards and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

Scheffold, F.

Sheth, S. A.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab 25, 830-841 (2005).
[CrossRef] [PubMed]

Smith, T. K.

T. K. Smith, B. Choi, J. C. Ramirez-San-Juan, J. S. Nelson, K. Osann and K. M. Kelly, "Microvascular blood flow dynamics associated with photodynamic therapy and pulsed dye laser irradiation," Lasers Surg. Med.,  38, 532-539 (2006).
[CrossRef] [PubMed]

Stewart, C.

K. R. Forrester, J. Tulip, C. Leonard, C. Stewart and R. C. Bray, "A laser speckle imaging technique for measuring tissue perfusion," IEEE Trans. Biomed. Eng. 51, 2074-2084 (2004).
[CrossRef] [PubMed]

Sugiyama, T.

M. Hirao, H. Oku, W. Goto, T. Sugiyama, T. Kobayashi and T. Ikeda, "Effects of adenosine on optic nerve head circulation in rabbits," Exp. Eye Res. 79, 729-735 (2004).
[CrossRef] [PubMed]

Toga, A. W.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab 25, 830-841 (2005).
[CrossRef] [PubMed]

Tulip, J.

K. R. Forrester, J. Tulip, C. Leonard, C. Stewart and R. C. Bray, "A laser speckle imaging technique for measuring tissue perfusion," IEEE Trans. Biomed. Eng. 51, 2074-2084 (2004).
[CrossRef] [PubMed]

Völker, A.

Walker, M. A.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab 25, 830-841 (2005).
[CrossRef] [PubMed]

Weber, B.

Webster, S.

J. D. Briers and S. Webster, "Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields," Opt. Commun. 116, 36-42 (1995).
[CrossRef]

Yuan, S.

Zakharov, P.

Zeng, S. Q.

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, W. H. Luo and H. Gong, "Hyperosmotic chemical agent's effect on in vivo cerebral blood flow revealed by laser speckle," Appl. Opt. 43, 5772-5777 (2004).
[CrossRef] [PubMed]

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

Zhao, Y. H.

Appl. Opt.

Exp. Eye Res.

M. Hirao, H. Oku, W. Goto, T. Sugiyama, T. Kobayashi and T. Ikeda, "Effects of adenosine on optic nerve head circulation in rabbits," Exp. Eye Res. 79, 729-735 (2004).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng.

K. R. Forrester, J. Tulip, C. Leonard, C. Stewart and R. C. Bray, "A laser speckle imaging technique for measuring tissue perfusion," IEEE Trans. Biomed. Eng. 51, 2074-2084 (2004).
[CrossRef] [PubMed]

J. Biomed. Opt.

B. Choi, J. C. Ramirez-San-Juan, J. Lotfi, J. S. Nelson, "Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics," J. Biomed. Opt. 11, 041129 (2006).
[CrossRef] [PubMed]

J. D. Briers, G. Richards and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab 25, 830-841 (2005).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab.

A. K. Dunn, T. Bolay, M. A. Moskowitz and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

Lasers Surg. Med.

T. K. Smith, B. Choi, J. C. Ramirez-San-Juan, J. S. Nelson, K. Osann and K. M. Kelly, "Microvascular blood flow dynamics associated with photodynamic therapy and pulsed dye laser irradiation," Lasers Surg. Med.,  38, 532-539 (2006).
[CrossRef] [PubMed]

Microvasc. Res.

B. Choi, N. M. Kang and J. S. Nelson, "Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skinfold model," Microvasc. Res. 68, 143-146 (2004).
[CrossRef] [PubMed]

Nat. Med.

H. Bolay, U. Reuter, A.K. Dunn, Z.H. Huang, D.A. Boas, M.A. Moskowitz, "Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model," Nat. Med. 8, 136-142 (2002).
[CrossRef] [PubMed]

Neuroimage

A. K. Dunn, A. Devor, A. M. Dale and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," Neuroimage 27, 279-290 (2005).
[CrossRef] [PubMed]

Opt. Commun.

A. F. Fercher and J. D. Briers, "Flow Visualization by Means of Single-Exposure Speckle Photography," Opt. Commun. 37, 326-330 (1981).
[CrossRef]

J. D. Briers and S. Webster, "Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields," Opt. Commun. 116, 36-42 (1995).
[CrossRef]

Opt. Lett.

Proc. IEEE

J. W. Goodman, "Some effects of target-induced scintillation on optical radar performance," Proc. IEEE,  53, 1688 (1965).
[CrossRef]

Proc. SPIE

J. D. Briers and A. F. Fercher, "A laser speckle technique for the visualization of retinal blood flow," Proc. SPIE 369, 22-28 (1982).

Other

R. Bracewell, The Fourier transform and its applications (Mc Graw-Hill, 1965).

J. W. Goodman, Statistical Optics (John Wiley & Sons, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig 1.
Fig 1.

Use of either Lorentzian and Gaussian velocity distributions (Eqs. 3 and 4 respectively) result in distinct relationships between C and the ratio T/τc (which is proportional to SFI)

Fig. 2.
Fig. 2.

Use of either Lorentzian and rederived Gaussian speckle imaging equations (Eqs. 3 and 10 respectively) results in identical mapping of C to the ratio T/τc for 0<C<0.6.

Fig 3.
Fig 3.

Representative speckle contrast image of a microvascular network in a rodent dorsal skinfold window chamber model. Of the ~1.4 million pixels comprising the image, only 2718 (~0.2%) of the pixels have C values greater than 0.6.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

C 2 = σ 2 I 2 = ( 1 T ) 0 T γ ( t ) 2 dt
γ ( t ) = exp ( t τ c ) ,
C = { ( τ c 2 T ) [ 1 exp ( 2 T τ c ) ] } 1 2
C = [ ( π 1 2 2 ) ( τ c T ) erf ( T τ c ) ] 1 2
γ ( t ) = exp ( t 2 2 τ c 2 ) ,
τ cl = 2 TC 2
τ cg = 2 TC 2 ( π 1 2 ) ,
1 τ cg = ( π 1 2 ) ( 1 τ cl )
τ c = γ ( t ) 2 dt
γ ( t ) = exp ( π t 2 2 τ c 2 )
C = [ ( 1 2 ) ( τ c T ) erf ( π 1 2 T τ c ) ] 1 2
τ cga = 2 TC 2
T τ cl = ( 1 C 2 )
T τ cga = ( 3 π ) 1 2 ( 1 C 2 ) 1 2
C = [ ( τ c lg T ) + ( 1 2 ) ( τ c lg T ) 2 [ exp ( 2 T τ c lg ) 1 ] ] 1 2
C = ( ( τ cgg T ) erf ( π 1 2 T τ cgg ) ( 1 π ) ( τ cgg T ) 2 { 1 exp [ π ( T τ cgg ) 2 ] } ) 1 2 ,
1 τ c lg = 1 TC 2 = 1 τ cgg
( S N ) rms = T τ c .

Metrics