Abstract

We demonstrate high-performance nanowire superconducting single photon detectors (SSPDs) on bN thin films grown at a temperature compatible with monolithic integration. NbN films ranging from 150nm to 3nm in thickness were deposited by dc magnetron sputtering on MgO substrates at 400°C. SSPDs were fabricated on high quality NbN films of different thickness (7 to 3nm) deposited under optimal conditions. Electrical and optical characterizations were performed on the SSPDs. The highest QE value measured at 4.2K is 20% at 1300nm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Phot. 1, 343- 348 (2007).
    [CrossRef]
  2. G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
    [CrossRef]
  3. A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol’tsman,W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared," IEEE Trans. Appl. Supercond. 15(2 PART I), 571-574 (2005).
    [CrossRef]
  4. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Goltsman, and K. K. Berggren, "Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating," Opt. Express 14, 527-534 (2006).
    [CrossRef] [PubMed]
  5. K. Iizuka, K. Matsumaru, T. Suzuki, H. Hirose, K. Suzuki, and H. Okamoto, "Arsenic-free GaAs substrate preparation and direct growth of GaAs/AlGaAs multiple quantum well without buffer layer," J. Cryst. Growth 150(1-4 pt 1), 13-17 (1995).
    [CrossRef]
  6. S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, "NbN superconducting single-photon detectors prepared on single-crystal MgO substrates," IEEE Trans. Appl. Supercond. 17, 285-288 (2007).
    [CrossRef]
  7. D. D. Bacon, A. T. English, S. Nakahara, F. G. Peters, H. Schreiber, W. R. Sinclair, and R. B. van Dover, "Properties of NbN thin films deposited on ambient temperature substrates," J. Appl. Phys. 54, 6509-6516 (1983).
    [CrossRef]
  8. J. C. Villegier, L. Vieux-Rochaz, M. Goniche, P. Renard, and M. Vabre, "NbN tunnel junctions," IEEE Trans. Mag. 21, 498-504 (1984).
    [CrossRef]
  9. M. Benkahoul, E. Martinez, A. Karimi, R. Sanjines, and F. Levy, "Structural and mechanical properties of sputtered cubic and hexagonal NbNx thin films," Surf. Coat. Technol. 180-181, 178-183 (2004).
    [CrossRef]
  10. H. C. Jones, "Some properties of granular thin films of high-field superconductors," Appl. Phys. Lett. 27, 471-473 (1975).
    [CrossRef]
  11. F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, P. Carelli, F. Marsili, and A. Fiore, "Electrical characterization of superconducting single-photon detectors," J. Appl. Phys. 101, 054,302 (2007).
    [CrossRef]
  12. W. J. Skocpol, M. R. Beasley, and M. Tinkham, "SELF-HEATING HOTSPOTS IN SUPERCONDUCTING THIN-FILM MICROBRIDGES," J. Appl. Phys. 45, 4054-4066 (1974).
    [CrossRef]
  13. A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smimov, G. N. Goltsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687 (2002).
    [CrossRef]
  14. A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791-793 (2003).
    [CrossRef]

2007 (2)

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, "NbN superconducting single-photon detectors prepared on single-crystal MgO substrates," IEEE Trans. Appl. Supercond. 17, 285-288 (2007).
[CrossRef]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Phot. 1, 343- 348 (2007).
[CrossRef]

2006 (1)

2005 (1)

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol’tsman,W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared," IEEE Trans. Appl. Supercond. 15(2 PART I), 571-574 (2005).
[CrossRef]

2004 (1)

M. Benkahoul, E. Martinez, A. Karimi, R. Sanjines, and F. Levy, "Structural and mechanical properties of sputtered cubic and hexagonal NbNx thin films," Surf. Coat. Technol. 180-181, 178-183 (2004).
[CrossRef]

2003 (1)

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791-793 (2003).
[CrossRef]

2002 (1)

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smimov, G. N. Goltsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687 (2002).
[CrossRef]

2001 (1)

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

1995 (1)

K. Iizuka, K. Matsumaru, T. Suzuki, H. Hirose, K. Suzuki, and H. Okamoto, "Arsenic-free GaAs substrate preparation and direct growth of GaAs/AlGaAs multiple quantum well without buffer layer," J. Cryst. Growth 150(1-4 pt 1), 13-17 (1995).
[CrossRef]

1984 (1)

J. C. Villegier, L. Vieux-Rochaz, M. Goniche, P. Renard, and M. Vabre, "NbN tunnel junctions," IEEE Trans. Mag. 21, 498-504 (1984).
[CrossRef]

1983 (1)

D. D. Bacon, A. T. English, S. Nakahara, F. G. Peters, H. Schreiber, W. R. Sinclair, and R. B. van Dover, "Properties of NbN thin films deposited on ambient temperature substrates," J. Appl. Phys. 54, 6509-6516 (1983).
[CrossRef]

1975 (1)

H. C. Jones, "Some properties of granular thin films of high-field superconductors," Appl. Phys. Lett. 27, 471-473 (1975).
[CrossRef]

1974 (1)

W. J. Skocpol, M. R. Beasley, and M. Tinkham, "SELF-HEATING HOTSPOTS IN SUPERCONDUCTING THIN-FILM MICROBRIDGES," J. Appl. Phys. 45, 4054-4066 (1974).
[CrossRef]

Anant, V.

Bacon, D. D.

D. D. Bacon, A. T. English, S. Nakahara, F. G. Peters, H. Schreiber, W. R. Sinclair, and R. B. van Dover, "Properties of NbN thin films deposited on ambient temperature substrates," J. Appl. Phys. 54, 6509-6516 (1983).
[CrossRef]

Beasley, M. R.

W. J. Skocpol, M. R. Beasley, and M. Tinkham, "SELF-HEATING HOTSPOTS IN SUPERCONDUCTING THIN-FILM MICROBRIDGES," J. Appl. Phys. 45, 4054-4066 (1974).
[CrossRef]

Benkahoul, M.

M. Benkahoul, E. Martinez, A. Karimi, R. Sanjines, and F. Levy, "Structural and mechanical properties of sputtered cubic and hexagonal NbNx thin films," Surf. Coat. Technol. 180-181, 178-183 (2004).
[CrossRef]

Berggren, K. K.

Carelli, P.

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, P. Carelli, F. Marsili, and A. Fiore, "Electrical characterization of superconducting single-photon detectors," J. Appl. Phys. 101, 054,302 (2007).
[CrossRef]

Castellano, M. G.

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, P. Carelli, F. Marsili, and A. Fiore, "Electrical characterization of superconducting single-photon detectors," J. Appl. Phys. 101, 054,302 (2007).
[CrossRef]

Chulkova, G.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol’tsman,W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared," IEEE Trans. Appl. Supercond. 15(2 PART I), 571-574 (2005).
[CrossRef]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smimov, G. N. Goltsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687 (2002).
[CrossRef]

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Dauler, E. A.

Dzardanov, A.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

English, A. T.

D. D. Bacon, A. T. English, S. Nakahara, F. G. Peters, H. Schreiber, W. R. Sinclair, and R. B. van Dover, "Properties of NbN thin films deposited on ambient temperature substrates," J. Appl. Phys. 54, 6509-6516 (1983).
[CrossRef]

Fiore, A.

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, P. Carelli, F. Marsili, and A. Fiore, "Electrical characterization of superconducting single-photon detectors," J. Appl. Phys. 101, 054,302 (2007).
[CrossRef]

Fujiwara, M.

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, "NbN superconducting single-photon detectors prepared on single-crystal MgO substrates," IEEE Trans. Appl. Supercond. 17, 285-288 (2007).
[CrossRef]

Gaggero, A.

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, P. Carelli, F. Marsili, and A. Fiore, "Electrical characterization of superconducting single-photon detectors," J. Appl. Phys. 101, 054,302 (2007).
[CrossRef]

Gol’tsman, G.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol’tsman,W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared," IEEE Trans. Appl. Supercond. 15(2 PART I), 571-574 (2005).
[CrossRef]

Gol’tsman, G. N.

Goltsman, G. N.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smimov, G. N. Goltsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687 (2002).
[CrossRef]

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Goniche, M.

J. C. Villegier, L. Vieux-Rochaz, M. Goniche, P. Renard, and M. Vabre, "NbN tunnel junctions," IEEE Trans. Mag. 21, 498-504 (1984).
[CrossRef]

Hadfield, R. H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Phot. 1, 343- 348 (2007).
[CrossRef]

Hirose, H.

K. Iizuka, K. Matsumaru, T. Suzuki, H. Hirose, K. Suzuki, and H. Okamoto, "Arsenic-free GaAs substrate preparation and direct growth of GaAs/AlGaAs multiple quantum well without buffer layer," J. Cryst. Growth 150(1-4 pt 1), 13-17 (1995).
[CrossRef]

Honjo, T.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Phot. 1, 343- 348 (2007).
[CrossRef]

Iizuka, K.

K. Iizuka, K. Matsumaru, T. Suzuki, H. Hirose, K. Suzuki, and H. Okamoto, "Arsenic-free GaAs substrate preparation and direct growth of GaAs/AlGaAs multiple quantum well without buffer layer," J. Cryst. Growth 150(1-4 pt 1), 13-17 (1995).
[CrossRef]

Jones, H. C.

H. C. Jones, "Some properties of granular thin films of high-field superconductors," Appl. Phys. Lett. 27, 471-473 (1975).
[CrossRef]

Karimi, A.

M. Benkahoul, E. Martinez, A. Karimi, R. Sanjines, and F. Levy, "Structural and mechanical properties of sputtered cubic and hexagonal NbNx thin films," Surf. Coat. Technol. 180-181, 178-183 (2004).
[CrossRef]

Kerman, A. J.

Korneev, A.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol’tsman,W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared," IEEE Trans. Appl. Supercond. 15(2 PART I), 571-574 (2005).
[CrossRef]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smimov, G. N. Goltsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687 (2002).
[CrossRef]

Leoni, R.

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, P. Carelli, F. Marsili, and A. Fiore, "Electrical characterization of superconducting single-photon detectors," J. Appl. Phys. 101, 054,302 (2007).
[CrossRef]

Lipatov, A.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smimov, G. N. Goltsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687 (2002).
[CrossRef]

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Marsili, F.

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, P. Carelli, F. Marsili, and A. Fiore, "Electrical characterization of superconducting single-photon detectors," J. Appl. Phys. 101, 054,302 (2007).
[CrossRef]

Martinez, E.

M. Benkahoul, E. Martinez, A. Karimi, R. Sanjines, and F. Levy, "Structural and mechanical properties of sputtered cubic and hexagonal NbNx thin films," Surf. Coat. Technol. 180-181, 178-183 (2004).
[CrossRef]

Martinis, J. M.

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791-793 (2003).
[CrossRef]

Matsumaru, K.

K. Iizuka, K. Matsumaru, T. Suzuki, H. Hirose, K. Suzuki, and H. Okamoto, "Arsenic-free GaAs substrate preparation and direct growth of GaAs/AlGaAs multiple quantum well without buffer layer," J. Cryst. Growth 150(1-4 pt 1), 13-17 (1995).
[CrossRef]

Mattioli, F.

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, P. Carelli, F. Marsili, and A. Fiore, "Electrical characterization of superconducting single-photon detectors," J. Appl. Phys. 101, 054,302 (2007).
[CrossRef]

Matvienko, V.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol’tsman,W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared," IEEE Trans. Appl. Supercond. 15(2 PART I), 571-574 (2005).
[CrossRef]

Miki, S.

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, "NbN superconducting single-photon detectors prepared on single-crystal MgO substrates," IEEE Trans. Appl. Supercond. 17, 285-288 (2007).
[CrossRef]

Miller, A. J.

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791-793 (2003).
[CrossRef]

Milostnaya, I.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol’tsman,W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared," IEEE Trans. Appl. Supercond. 15(2 PART I), 571-574 (2005).
[CrossRef]

Minaeva, O.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol’tsman,W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared," IEEE Trans. Appl. Supercond. 15(2 PART I), 571-574 (2005).
[CrossRef]

Nakahara, S.

D. D. Bacon, A. T. English, S. Nakahara, F. G. Peters, H. Schreiber, W. R. Sinclair, and R. B. van Dover, "Properties of NbN thin films deposited on ambient temperature substrates," J. Appl. Phys. 54, 6509-6516 (1983).
[CrossRef]

Nam, S. W.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Phot. 1, 343- 348 (2007).
[CrossRef]

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791-793 (2003).
[CrossRef]

Okamoto, H.

K. Iizuka, K. Matsumaru, T. Suzuki, H. Hirose, K. Suzuki, and H. Okamoto, "Arsenic-free GaAs substrate preparation and direct growth of GaAs/AlGaAs multiple quantum well without buffer layer," J. Cryst. Growth 150(1-4 pt 1), 13-17 (1995).
[CrossRef]

Okunev, O.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smimov, G. N. Goltsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687 (2002).
[CrossRef]

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Pearlman, A.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol’tsman,W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared," IEEE Trans. Appl. Supercond. 15(2 PART I), 571-574 (2005).
[CrossRef]

Peters, F. G.

D. D. Bacon, A. T. English, S. Nakahara, F. G. Peters, H. Schreiber, W. R. Sinclair, and R. B. van Dover, "Properties of NbN thin films deposited on ambient temperature substrates," J. Appl. Phys. 54, 6509-6516 (1983).
[CrossRef]

Renard, P.

J. C. Villegier, L. Vieux-Rochaz, M. Goniche, P. Renard, and M. Vabre, "NbN tunnel junctions," IEEE Trans. Mag. 21, 498-504 (1984).
[CrossRef]

Rosfjord, K. M.

Rubtsova, I.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol’tsman,W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared," IEEE Trans. Appl. Supercond. 15(2 PART I), 571-574 (2005).
[CrossRef]

Sanjines, R.

M. Benkahoul, E. Martinez, A. Karimi, R. Sanjines, and F. Levy, "Structural and mechanical properties of sputtered cubic and hexagonal NbNx thin films," Surf. Coat. Technol. 180-181, 178-183 (2004).
[CrossRef]

Sasaki, M.

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, "NbN superconducting single-photon detectors prepared on single-crystal MgO substrates," IEEE Trans. Appl. Supercond. 17, 285-288 (2007).
[CrossRef]

Schreiber, H.

D. D. Bacon, A. T. English, S. Nakahara, F. G. Peters, H. Schreiber, W. R. Sinclair, and R. B. van Dover, "Properties of NbN thin films deposited on ambient temperature substrates," J. Appl. Phys. 54, 6509-6516 (1983).
[CrossRef]

Semenov, A.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smimov, G. N. Goltsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687 (2002).
[CrossRef]

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Sergienko, A. V.

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791-793 (2003).
[CrossRef]

Sinclair, W. R.

D. D. Bacon, A. T. English, S. Nakahara, F. G. Peters, H. Schreiber, W. R. Sinclair, and R. B. van Dover, "Properties of NbN thin films deposited on ambient temperature substrates," J. Appl. Phys. 54, 6509-6516 (1983).
[CrossRef]

Skocpol, W. J.

W. J. Skocpol, M. R. Beasley, and M. Tinkham, "SELF-HEATING HOTSPOTS IN SUPERCONDUCTING THIN-FILM MICROBRIDGES," J. Appl. Phys. 45, 4054-4066 (1974).
[CrossRef]

Slysz, W.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol’tsman,W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared," IEEE Trans. Appl. Supercond. 15(2 PART I), 571-574 (2005).
[CrossRef]

Smimov, K.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smimov, G. N. Goltsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687 (2002).
[CrossRef]

Smirnov, K.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol’tsman,W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared," IEEE Trans. Appl. Supercond. 15(2 PART I), 571-574 (2005).
[CrossRef]

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Sobolewski, R.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol’tsman,W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared," IEEE Trans. Appl. Supercond. 15(2 PART I), 571-574 (2005).
[CrossRef]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smimov, G. N. Goltsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687 (2002).
[CrossRef]

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Suzuki, K.

K. Iizuka, K. Matsumaru, T. Suzuki, H. Hirose, K. Suzuki, and H. Okamoto, "Arsenic-free GaAs substrate preparation and direct growth of GaAs/AlGaAs multiple quantum well without buffer layer," J. Cryst. Growth 150(1-4 pt 1), 13-17 (1995).
[CrossRef]

Suzuki, T.

K. Iizuka, K. Matsumaru, T. Suzuki, H. Hirose, K. Suzuki, and H. Okamoto, "Arsenic-free GaAs substrate preparation and direct growth of GaAs/AlGaAs multiple quantum well without buffer layer," J. Cryst. Growth 150(1-4 pt 1), 13-17 (1995).
[CrossRef]

Takesue, H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Phot. 1, 343- 348 (2007).
[CrossRef]

Tamaki, K.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Phot. 1, 343- 348 (2007).
[CrossRef]

Tinkham, M.

W. J. Skocpol, M. R. Beasley, and M. Tinkham, "SELF-HEATING HOTSPOTS IN SUPERCONDUCTING THIN-FILM MICROBRIDGES," J. Appl. Phys. 45, 4054-4066 (1974).
[CrossRef]

Vabre, M.

J. C. Villegier, L. Vieux-Rochaz, M. Goniche, P. Renard, and M. Vabre, "NbN tunnel junctions," IEEE Trans. Mag. 21, 498-504 (1984).
[CrossRef]

van Dover, R. B.

D. D. Bacon, A. T. English, S. Nakahara, F. G. Peters, H. Schreiber, W. R. Sinclair, and R. B. van Dover, "Properties of NbN thin films deposited on ambient temperature substrates," J. Appl. Phys. 54, 6509-6516 (1983).
[CrossRef]

Verevkin, A.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol’tsman,W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared," IEEE Trans. Appl. Supercond. 15(2 PART I), 571-574 (2005).
[CrossRef]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smimov, G. N. Goltsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687 (2002).
[CrossRef]

Vieux-Rochaz, L.

J. C. Villegier, L. Vieux-Rochaz, M. Goniche, P. Renard, and M. Vabre, "NbN tunnel junctions," IEEE Trans. Mag. 21, 498-504 (1984).
[CrossRef]

Villegier, J. C.

J. C. Villegier, L. Vieux-Rochaz, M. Goniche, P. Renard, and M. Vabre, "NbN tunnel junctions," IEEE Trans. Mag. 21, 498-504 (1984).
[CrossRef]

Voronov, B.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Voronov, B. M.

Voronov, V.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol’tsman,W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared," IEEE Trans. Appl. Supercond. 15(2 PART I), 571-574 (2005).
[CrossRef]

Wang, Z.

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, "NbN superconducting single-photon detectors prepared on single-crystal MgO substrates," IEEE Trans. Appl. Supercond. 17, 285-288 (2007).
[CrossRef]

Williams, C.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Yamamoto, Y.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Phot. 1, 343- 348 (2007).
[CrossRef]

Yang, J. K. W.

Zhang, J.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smimov, G. N. Goltsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687 (2002).
[CrossRef]

Zhang, Q.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Phot. 1, 343- 348 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

H. C. Jones, "Some properties of granular thin films of high-field superconductors," Appl. Phys. Lett. 27, 471-473 (1975).
[CrossRef]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smimov, G. N. Goltsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687 (2002).
[CrossRef]

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791-793 (2003).
[CrossRef]

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

IEEE Trans. Appl. Supercond. (2)

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol’tsman,W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared," IEEE Trans. Appl. Supercond. 15(2 PART I), 571-574 (2005).
[CrossRef]

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, "NbN superconducting single-photon detectors prepared on single-crystal MgO substrates," IEEE Trans. Appl. Supercond. 17, 285-288 (2007).
[CrossRef]

IEEE Trans. Mag. (1)

J. C. Villegier, L. Vieux-Rochaz, M. Goniche, P. Renard, and M. Vabre, "NbN tunnel junctions," IEEE Trans. Mag. 21, 498-504 (1984).
[CrossRef]

J. Appl. Phys. (2)

D. D. Bacon, A. T. English, S. Nakahara, F. G. Peters, H. Schreiber, W. R. Sinclair, and R. B. van Dover, "Properties of NbN thin films deposited on ambient temperature substrates," J. Appl. Phys. 54, 6509-6516 (1983).
[CrossRef]

W. J. Skocpol, M. R. Beasley, and M. Tinkham, "SELF-HEATING HOTSPOTS IN SUPERCONDUCTING THIN-FILM MICROBRIDGES," J. Appl. Phys. 45, 4054-4066 (1974).
[CrossRef]

J. Cryst. Growth (1)

K. Iizuka, K. Matsumaru, T. Suzuki, H. Hirose, K. Suzuki, and H. Okamoto, "Arsenic-free GaAs substrate preparation and direct growth of GaAs/AlGaAs multiple quantum well without buffer layer," J. Cryst. Growth 150(1-4 pt 1), 13-17 (1995).
[CrossRef]

Nature Phot. (1)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Phot. 1, 343- 348 (2007).
[CrossRef]

Opt. Express (1)

Surf. Coat. Technol. (1)

M. Benkahoul, E. Martinez, A. Karimi, R. Sanjines, and F. Levy, "Structural and mechanical properties of sputtered cubic and hexagonal NbNx thin films," Surf. Coat. Technol. 180-181, 178-183 (2004).
[CrossRef]

Other (1)

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, P. Carelli, F. Marsili, and A. Fiore, "Electrical characterization of superconducting single-photon detectors," J. Appl. Phys. 101, 054,302 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Resistance vs temperature dependence of NbN films for four thicknesses: 7nm (circles), 5.5nm (stars), 4nm (squares) and 3nm (triangles). The deposition conditions were: TS =400°C, Ip =250mA, Ptot =2.5mtorr, 33% N2, R=3Å /s. Inset: TC and ΔTC vs. thickness (t). TC vary from 13.7K (ΔTC =0.4K) for t=7nm to 8.6K (ΔTC =0.9K) for t=3nm.

Fig. 2.
Fig. 2.

Scanning electron microscope (SEM) image of an SSPD. The nanowire width is w=100nm, the fill factor is f=40%. The inset shows an ultra-high resolution image of two stripes. The mean width variation was estimated to be Δw~10nm.

Fig. 3.
Fig. 3.

I-V curve at 4.2K of a 100nm wide, 7nm thick meander (solid line) measured with RB =10Ω. For RB =10Ω, the DC load line (dashed) never intersects the I-V both in the superconducting and hotspot plateau regions, which is not the case for higher values of RB (dotted line, for RB =100Ω). The voltage offset is due to thermoelectric effects (electrical contact from room temperature to the device is realized through junctions between different metals at different temperatures, so a voltage is created due to the Seebeck effect). The inset shows the I-V curve in a wider voltage range.

Fig. 4.
Fig. 4.

QE (open squares) and DK (open triangles) as a function of the normalized bias current for the single photon detection regime of an optimum 5x5µm SSPD: w=100nm, f=40% t=4nm. The incident photon wavelength was 1.3µm. Temperature was 4.2K

Metrics