Abstract

Low-loss ion-exchanged sol-gel channel waveguides on silicon substrate were fabricated. Ion-exchangeable aluminosilicate glass film was fabricated by sol-gel technique. Ag+-Li+ thermal ion-exchange was used to achieve single mode channel waveguide. Propagation loss of 0.50 dB/cm and coupling loss of 0.76 dB/facet were measured by cutback method. A Y-branch power splitter was also fabricated. The results demonstrate that ion-exchange technique can be applied to prepare low-loss channel waveguides in thin film structures.

© 2008 Optical Society of America

Full Article  |  PDF Article

Corrections

Zian He, Yigang Li, Yingfeng Li, Yanwu Zhang, Liying Liu, and Lei Xu, "Low-loss channel waveguides and Y-splitter formed by ion-exchange in silica-on-silicon: erratum," Opt. Express 16, 12037-12038 (2008)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-16-16-12037

References

  • View by:
  • |
  • |
  • |

  1. T. Izawa and H. Nakagome, "Optical waveguide formed by electrically induced migration of ions in glass plates," Appl. Phys. Lett. 21, 584-586 (1972).
    [CrossRef]
  2. R. V. Ramaswamy and R. Srivastava, "Ion-exchanged glass waveguides: a review," J. Lightwave Technol. 6, 984-1002 (1988).
    [CrossRef]
  3. D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, "Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters," IEEE Photon. Technol. Lett. 9, 315-317 (1997).
    [CrossRef]
  4. S. Yliniemi, J. Albert, Q. Wang, and S. Honkanen, "UV-exposed Bragg gratings for laser applications in silver-sodium ion-exchanged phosphate glass waveguides," Opt. Express 14, 2898-2903 (2006).
    [CrossRef] [PubMed]
  5. K. A. Winick, "Rare-earth-doped waveguide lasers in glass and LiNbO3: a review," Proc. SPIE 3280, 88-104 (1998).
    [CrossRef]
  6. G. C. Righini, S. Pelli, M. Ferrari, C. Armellini, L. Zampedri, C. Tosello, S. Ronchin, R. Rolli, E. Moser, M. Montagna, A. Chiasera, and S. J. L. Ribeiro, "Er-doped silica-based waveguides prepared by different techniques: RF-sputtering, sol-gel and ion-exchange," Opt. Quant. Electron. 34, 1151-1166 (2002).
    [CrossRef]
  7. C. R. Doerr and K. Okamoto, "Advances in silica planar lightwave circuits," J. Lightwave Technol. 24, 4763-4789 (2006).
    [CrossRef]
  8. J. H?bner, S. Guldberg-Kjær, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, "Planar Er- and Yb-doped amplifiers and lasers," Appl. Phys. B 73, 435-438 (2001).
    [CrossRef]
  9. C. C. Li, H. K. Kim, and M. Migliuolo, "Er-doped glass ridge-waveguide amplifiers fabricated with collimated sputter deposition technique," IEEE Photon. Technol. Lett. 9, 1223-1225 (1997).
    [CrossRef]
  10. W. Huang and R. R. A. Syms, "Sol-gel silica-on-silicon buried-channel EDWAs," J. Lightwave Technol. 21, 1339-1349 (2003).
    [CrossRef]
  11. J. Fick, A. Martucci, and M. Guglielmi, "Fabrication of erbium-doped channel waveguides by a combination of ion exchange and sol-gel techniques," J. Sol-Gel Sci. Technol. 19, 573-576 (2000).
    [CrossRef]
  12. S. F. Wong, E. Y. B. Pun, and P. S. Chung, "Er3+-Yb3+ codoped phosphate glass waveguide amplifier using Ag+-Li+ ion exchange," IEEE Photon. Technol. Lett. 14, 80-82 (2002).
    [CrossRef]
  13. A. S. Holmes, R. R. A. Syms, M. Li, and M. Green, "Fabrication of buried channel waveguides on silicon substrates using spin-on glass," Appl. Opt. 32, 4916-4921 (1993).
    [CrossRef] [PubMed]
  14. K. S. Chiang, "Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol. LT-3, 385-391 (1985).
    [CrossRef]
  15. C. C. Teng, "Precision measurements of the optical attenuation profile along the propagation path in thin-film waveguides," Appl. Opt. 32, 1051-1054 (1993).
    [CrossRef] [PubMed]
  16. J. Gamet and G. Pandraud, "Ultralow-loss 1 × 8 splitter based on field matching Y junction," IEEE Photon. Technol. Lett. 16, 2060-2062 (2004).
    [CrossRef]

2006 (2)

2004 (1)

J. Gamet and G. Pandraud, "Ultralow-loss 1 × 8 splitter based on field matching Y junction," IEEE Photon. Technol. Lett. 16, 2060-2062 (2004).
[CrossRef]

2003 (1)

2002 (2)

S. F. Wong, E. Y. B. Pun, and P. S. Chung, "Er3+-Yb3+ codoped phosphate glass waveguide amplifier using Ag+-Li+ ion exchange," IEEE Photon. Technol. Lett. 14, 80-82 (2002).
[CrossRef]

G. C. Righini, S. Pelli, M. Ferrari, C. Armellini, L. Zampedri, C. Tosello, S. Ronchin, R. Rolli, E. Moser, M. Montagna, A. Chiasera, and S. J. L. Ribeiro, "Er-doped silica-based waveguides prepared by different techniques: RF-sputtering, sol-gel and ion-exchange," Opt. Quant. Electron. 34, 1151-1166 (2002).
[CrossRef]

2001 (1)

J. H?bner, S. Guldberg-Kjær, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, "Planar Er- and Yb-doped amplifiers and lasers," Appl. Phys. B 73, 435-438 (2001).
[CrossRef]

2000 (1)

J. Fick, A. Martucci, and M. Guglielmi, "Fabrication of erbium-doped channel waveguides by a combination of ion exchange and sol-gel techniques," J. Sol-Gel Sci. Technol. 19, 573-576 (2000).
[CrossRef]

1998 (1)

K. A. Winick, "Rare-earth-doped waveguide lasers in glass and LiNbO3: a review," Proc. SPIE 3280, 88-104 (1998).
[CrossRef]

1997 (2)

C. C. Li, H. K. Kim, and M. Migliuolo, "Er-doped glass ridge-waveguide amplifiers fabricated with collimated sputter deposition technique," IEEE Photon. Technol. Lett. 9, 1223-1225 (1997).
[CrossRef]

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, "Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters," IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

1993 (2)

1988 (1)

R. V. Ramaswamy and R. Srivastava, "Ion-exchanged glass waveguides: a review," J. Lightwave Technol. 6, 984-1002 (1988).
[CrossRef]

1985 (1)

K. S. Chiang, "Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol. LT-3, 385-391 (1985).
[CrossRef]

1972 (1)

T. Izawa and H. Nakagome, "Optical waveguide formed by electrically induced migration of ions in glass plates," Appl. Phys. Lett. 21, 584-586 (1972).
[CrossRef]

Albert, J.

Armellini, C.

G. C. Righini, S. Pelli, M. Ferrari, C. Armellini, L. Zampedri, C. Tosello, S. Ronchin, R. Rolli, E. Moser, M. Montagna, A. Chiasera, and S. J. L. Ribeiro, "Er-doped silica-based waveguides prepared by different techniques: RF-sputtering, sol-gel and ion-exchange," Opt. Quant. Electron. 34, 1151-1166 (2002).
[CrossRef]

Balslev, S.

J. H?bner, S. Guldberg-Kjær, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, "Planar Er- and Yb-doped amplifiers and lasers," Appl. Phys. B 73, 435-438 (2001).
[CrossRef]

Barbier, D.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, "Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters," IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

Chiang, K. S.

K. S. Chiang, "Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol. LT-3, 385-391 (1985).
[CrossRef]

Chiasera, A.

G. C. Righini, S. Pelli, M. Ferrari, C. Armellini, L. Zampedri, C. Tosello, S. Ronchin, R. Rolli, E. Moser, M. Montagna, A. Chiasera, and S. J. L. Ribeiro, "Er-doped silica-based waveguides prepared by different techniques: RF-sputtering, sol-gel and ion-exchange," Opt. Quant. Electron. 34, 1151-1166 (2002).
[CrossRef]

Chung, P. S.

S. F. Wong, E. Y. B. Pun, and P. S. Chung, "Er3+-Yb3+ codoped phosphate glass waveguide amplifier using Ag+-Li+ ion exchange," IEEE Photon. Technol. Lett. 14, 80-82 (2002).
[CrossRef]

Clauss, G.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, "Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters," IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

Delavaux, J.-M. P.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, "Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters," IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

Doerr, C. R.

Dyngaard, M.

J. H?bner, S. Guldberg-Kjær, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, "Planar Er- and Yb-doped amplifiers and lasers," Appl. Phys. B 73, 435-438 (2001).
[CrossRef]

Ferrari, M.

G. C. Righini, S. Pelli, M. Ferrari, C. Armellini, L. Zampedri, C. Tosello, S. Ronchin, R. Rolli, E. Moser, M. Montagna, A. Chiasera, and S. J. L. Ribeiro, "Er-doped silica-based waveguides prepared by different techniques: RF-sputtering, sol-gel and ion-exchange," Opt. Quant. Electron. 34, 1151-1166 (2002).
[CrossRef]

Feuchter, T.

J. H?bner, S. Guldberg-Kjær, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, "Planar Er- and Yb-doped amplifiers and lasers," Appl. Phys. B 73, 435-438 (2001).
[CrossRef]

Fick, J.

J. Fick, A. Martucci, and M. Guglielmi, "Fabrication of erbium-doped channel waveguides by a combination of ion exchange and sol-gel techniques," J. Sol-Gel Sci. Technol. 19, 573-576 (2000).
[CrossRef]

Gamet, J.

J. Gamet and G. Pandraud, "Ultralow-loss 1 × 8 splitter based on field matching Y junction," IEEE Photon. Technol. Lett. 16, 2060-2062 (2004).
[CrossRef]

Green, M.

Guglielmi, M.

J. Fick, A. Martucci, and M. Guglielmi, "Fabrication of erbium-doped channel waveguides by a combination of ion exchange and sol-gel techniques," J. Sol-Gel Sci. Technol. 19, 573-576 (2000).
[CrossRef]

Guldberg-Kjær, S.

J. H?bner, S. Guldberg-Kjær, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, "Planar Er- and Yb-doped amplifiers and lasers," Appl. Phys. B 73, 435-438 (2001).
[CrossRef]

Holmes, A. S.

Honkanen, S.

Huang, W.

Hubner, J.

J. H?bner, S. Guldberg-Kjær, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, "Planar Er- and Yb-doped amplifiers and lasers," Appl. Phys. B 73, 435-438 (2001).
[CrossRef]

Izawa, T.

T. Izawa and H. Nakagome, "Optical waveguide formed by electrically induced migration of ions in glass plates," Appl. Phys. Lett. 21, 584-586 (1972).
[CrossRef]

Jensen, C.

J. H?bner, S. Guldberg-Kjær, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, "Planar Er- and Yb-doped amplifiers and lasers," Appl. Phys. B 73, 435-438 (2001).
[CrossRef]

Kevorkian, A.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, "Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters," IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

Kim, H. K.

C. C. Li, H. K. Kim, and M. Migliuolo, "Er-doped glass ridge-waveguide amplifiers fabricated with collimated sputter deposition technique," IEEE Photon. Technol. Lett. 9, 1223-1225 (1997).
[CrossRef]

Li, C. C.

C. C. Li, H. K. Kim, and M. Migliuolo, "Er-doped glass ridge-waveguide amplifiers fabricated with collimated sputter deposition technique," IEEE Photon. Technol. Lett. 9, 1223-1225 (1997).
[CrossRef]

Li, M.

Martucci, A.

J. Fick, A. Martucci, and M. Guglielmi, "Fabrication of erbium-doped channel waveguides by a combination of ion exchange and sol-gel techniques," J. Sol-Gel Sci. Technol. 19, 573-576 (2000).
[CrossRef]

Migliuolo, M.

C. C. Li, H. K. Kim, and M. Migliuolo, "Er-doped glass ridge-waveguide amplifiers fabricated with collimated sputter deposition technique," IEEE Photon. Technol. Lett. 9, 1223-1225 (1997).
[CrossRef]

Montagna, M.

G. C. Righini, S. Pelli, M. Ferrari, C. Armellini, L. Zampedri, C. Tosello, S. Ronchin, R. Rolli, E. Moser, M. Montagna, A. Chiasera, and S. J. L. Ribeiro, "Er-doped silica-based waveguides prepared by different techniques: RF-sputtering, sol-gel and ion-exchange," Opt. Quant. Electron. 34, 1151-1166 (2002).
[CrossRef]

Moser, E.

G. C. Righini, S. Pelli, M. Ferrari, C. Armellini, L. Zampedri, C. Tosello, S. Ronchin, R. Rolli, E. Moser, M. Montagna, A. Chiasera, and S. J. L. Ribeiro, "Er-doped silica-based waveguides prepared by different techniques: RF-sputtering, sol-gel and ion-exchange," Opt. Quant. Electron. 34, 1151-1166 (2002).
[CrossRef]

Murphy, E.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, "Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters," IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

Nakagome, H.

T. Izawa and H. Nakagome, "Optical waveguide formed by electrically induced migration of ions in glass plates," Appl. Phys. Lett. 21, 584-586 (1972).
[CrossRef]

Okamoto, K.

Pandraud, G.

J. Gamet and G. Pandraud, "Ultralow-loss 1 × 8 splitter based on field matching Y junction," IEEE Photon. Technol. Lett. 16, 2060-2062 (2004).
[CrossRef]

Pelli, S.

G. C. Righini, S. Pelli, M. Ferrari, C. Armellini, L. Zampedri, C. Tosello, S. Ronchin, R. Rolli, E. Moser, M. Montagna, A. Chiasera, and S. J. L. Ribeiro, "Er-doped silica-based waveguides prepared by different techniques: RF-sputtering, sol-gel and ion-exchange," Opt. Quant. Electron. 34, 1151-1166 (2002).
[CrossRef]

Pun, E. Y. B.

S. F. Wong, E. Y. B. Pun, and P. S. Chung, "Er3+-Yb3+ codoped phosphate glass waveguide amplifier using Ag+-Li+ ion exchange," IEEE Photon. Technol. Lett. 14, 80-82 (2002).
[CrossRef]

Ramaswamy, R. V.

R. V. Ramaswamy and R. Srivastava, "Ion-exchanged glass waveguides: a review," J. Lightwave Technol. 6, 984-1002 (1988).
[CrossRef]

Rattay, M.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, "Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters," IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

Ribeiro, S. J. L.

G. C. Righini, S. Pelli, M. Ferrari, C. Armellini, L. Zampedri, C. Tosello, S. Ronchin, R. Rolli, E. Moser, M. Montagna, A. Chiasera, and S. J. L. Ribeiro, "Er-doped silica-based waveguides prepared by different techniques: RF-sputtering, sol-gel and ion-exchange," Opt. Quant. Electron. 34, 1151-1166 (2002).
[CrossRef]

Righini, G. C.

G. C. Righini, S. Pelli, M. Ferrari, C. Armellini, L. Zampedri, C. Tosello, S. Ronchin, R. Rolli, E. Moser, M. Montagna, A. Chiasera, and S. J. L. Ribeiro, "Er-doped silica-based waveguides prepared by different techniques: RF-sputtering, sol-gel and ion-exchange," Opt. Quant. Electron. 34, 1151-1166 (2002).
[CrossRef]

Rolli, R.

G. C. Righini, S. Pelli, M. Ferrari, C. Armellini, L. Zampedri, C. Tosello, S. Ronchin, R. Rolli, E. Moser, M. Montagna, A. Chiasera, and S. J. L. Ribeiro, "Er-doped silica-based waveguides prepared by different techniques: RF-sputtering, sol-gel and ion-exchange," Opt. Quant. Electron. 34, 1151-1166 (2002).
[CrossRef]

Ronchin, S.

G. C. Righini, S. Pelli, M. Ferrari, C. Armellini, L. Zampedri, C. Tosello, S. Ronchin, R. Rolli, E. Moser, M. Montagna, A. Chiasera, and S. J. L. Ribeiro, "Er-doped silica-based waveguides prepared by different techniques: RF-sputtering, sol-gel and ion-exchange," Opt. Quant. Electron. 34, 1151-1166 (2002).
[CrossRef]

Saint André, F.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, "Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters," IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

Shen, Y.

J. H?bner, S. Guldberg-Kjær, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, "Planar Er- and Yb-doped amplifiers and lasers," Appl. Phys. B 73, 435-438 (2001).
[CrossRef]

Srivastava, R.

R. V. Ramaswamy and R. Srivastava, "Ion-exchanged glass waveguides: a review," J. Lightwave Technol. 6, 984-1002 (1988).
[CrossRef]

Syms, R. R. A.

Teng, C. C.

Thomsen, C. L.

J. H?bner, S. Guldberg-Kjær, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, "Planar Er- and Yb-doped amplifiers and lasers," Appl. Phys. B 73, 435-438 (2001).
[CrossRef]

Tosello, C.

G. C. Righini, S. Pelli, M. Ferrari, C. Armellini, L. Zampedri, C. Tosello, S. Ronchin, R. Rolli, E. Moser, M. Montagna, A. Chiasera, and S. J. L. Ribeiro, "Er-doped silica-based waveguides prepared by different techniques: RF-sputtering, sol-gel and ion-exchange," Opt. Quant. Electron. 34, 1151-1166 (2002).
[CrossRef]

Trouillon, M.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, "Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters," IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

Wang, Q.

Winick, K. A.

K. A. Winick, "Rare-earth-doped waveguide lasers in glass and LiNbO3: a review," Proc. SPIE 3280, 88-104 (1998).
[CrossRef]

Wong, S. F.

S. F. Wong, E. Y. B. Pun, and P. S. Chung, "Er3+-Yb3+ codoped phosphate glass waveguide amplifier using Ag+-Li+ ion exchange," IEEE Photon. Technol. Lett. 14, 80-82 (2002).
[CrossRef]

Yliniemi, S.

Zampedri, L.

G. C. Righini, S. Pelli, M. Ferrari, C. Armellini, L. Zampedri, C. Tosello, S. Ronchin, R. Rolli, E. Moser, M. Montagna, A. Chiasera, and S. J. L. Ribeiro, "Er-doped silica-based waveguides prepared by different techniques: RF-sputtering, sol-gel and ion-exchange," Opt. Quant. Electron. 34, 1151-1166 (2002).
[CrossRef]

Zauner, D.

J. H?bner, S. Guldberg-Kjær, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, "Planar Er- and Yb-doped amplifiers and lasers," Appl. Phys. B 73, 435-438 (2001).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

J. H?bner, S. Guldberg-Kjær, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, "Planar Er- and Yb-doped amplifiers and lasers," Appl. Phys. B 73, 435-438 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

T. Izawa and H. Nakagome, "Optical waveguide formed by electrically induced migration of ions in glass plates," Appl. Phys. Lett. 21, 584-586 (1972).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, "Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters," IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

C. C. Li, H. K. Kim, and M. Migliuolo, "Er-doped glass ridge-waveguide amplifiers fabricated with collimated sputter deposition technique," IEEE Photon. Technol. Lett. 9, 1223-1225 (1997).
[CrossRef]

J. Gamet and G. Pandraud, "Ultralow-loss 1 × 8 splitter based on field matching Y junction," IEEE Photon. Technol. Lett. 16, 2060-2062 (2004).
[CrossRef]

S. F. Wong, E. Y. B. Pun, and P. S. Chung, "Er3+-Yb3+ codoped phosphate glass waveguide amplifier using Ag+-Li+ ion exchange," IEEE Photon. Technol. Lett. 14, 80-82 (2002).
[CrossRef]

J. Lightwave Technol. (4)

K. S. Chiang, "Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol. LT-3, 385-391 (1985).
[CrossRef]

C. R. Doerr and K. Okamoto, "Advances in silica planar lightwave circuits," J. Lightwave Technol. 24, 4763-4789 (2006).
[CrossRef]

W. Huang and R. R. A. Syms, "Sol-gel silica-on-silicon buried-channel EDWAs," J. Lightwave Technol. 21, 1339-1349 (2003).
[CrossRef]

R. V. Ramaswamy and R. Srivastava, "Ion-exchanged glass waveguides: a review," J. Lightwave Technol. 6, 984-1002 (1988).
[CrossRef]

J. Sol-Gel Sci. Technol. (1)

J. Fick, A. Martucci, and M. Guglielmi, "Fabrication of erbium-doped channel waveguides by a combination of ion exchange and sol-gel techniques," J. Sol-Gel Sci. Technol. 19, 573-576 (2000).
[CrossRef]

Opt. Express (1)

Opt. Quant. Electron. (1)

G. C. Righini, S. Pelli, M. Ferrari, C. Armellini, L. Zampedri, C. Tosello, S. Ronchin, R. Rolli, E. Moser, M. Montagna, A. Chiasera, and S. J. L. Ribeiro, "Er-doped silica-based waveguides prepared by different techniques: RF-sputtering, sol-gel and ion-exchange," Opt. Quant. Electron. 34, 1151-1166 (2002).
[CrossRef]

Proc. SPIE (1)

K. A. Winick, "Rare-earth-doped waveguide lasers in glass and LiNbO3: a review," Proc. SPIE 3280, 88-104 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the channel waveguide fabrication. (a) Buffer layer formed by DC-RTA; (b) Li+ ions-containing ion-exchangeable layer formed by DC-RTA; (c) Channel windows in Al film opened by standard photolithography; (d) Ag+-Li+ ion-exchange process; (e) Mask removed and channel waveguide realized.

Fig. 2.
Fig. 2.

(a) m-line measurement of the planar waveguide at 632.8 nm after ion-exchange in the mixed melt salt at 336 °C for 75 sec; (b) Inverse WKB approximation deduced spatial refractive index profile of the planar ion-exchanged waveguide

Fig. 3.
Fig. 3.

The characteristic of channel waveguide. (a) Contours of the numerical simulation of mode intensity profile (dashed lines) and the near field intensity distribution at 1550 nm of the waveguide (solid lines), corresponding to 0.2, 0.4, 0.6 and 0.8 times the maximum mode intensity value. The background is the measured near field intensity of the channel waveguide; (b) Loss characteristic of the channel waveguide measured by cutback method at 1550 nm.

Fig. 4.
Fig. 4.

(a) Schematic map of Y-branch power splitter; (b) Output mode pattern of the two branches.

Tables (1)

Tables Icon

Table 1. m-line measurement and fitted data

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n ( n ie , y , Δ n , d ) = n ie + Δ n × erfc ( y d ) ,
        d = 2 Dt .
C A t = D ( 2 C A x 2 + 2 C A y 2 ) ,
C A ( x , 0 , t > 0 ) = { C 0   for w 2 < x < w 2 0 for x < w 2 or x > w 2 ,
C A ( x , y , t = 0 ) = 0 for y < 0 .
Loss couple 10 log 10 4 a 2 W H W V ( a 2 + W H 2 ) ( a 2 + W V 2 )

Metrics