Abstract

We report on an erbium-doped fiber oscillator mode-locked by nonlinear polarization evolution operating in the large normal dispersion regime. The setup produced highly chirped 10 nJ pulses at 37MHz which can be compressed externally to below 75 fs. Hence, this simple and practical setup is capable of providing ultrashort pulses with a peak power of 140kW. The pulse formation is indeed subject to intrapulse Raman-scattering but a clean and stable pulse train can be observed. The similarities as well as the differences of the output characteristics to the parabolic pulse and wave breaking-free regime are explicated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  2. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, "On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations," Opt. Express 15, 8252-8262 (2007).
    [CrossRef] [PubMed]
  3. A. Chong, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ," Opt. Lett. 32, 2408-2410 (2007).
    [CrossRef] [PubMed]
  4. A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 31, 2734-2736 (2006).
    [CrossRef] [PubMed]
  5. A. Ruehl, H. Hundertmark, D. Wandt, C. Fallnich, and D. Kracht, "0.7W all-fiber Erbium oscillator generating 64 fs wave breaking-free pulses," Opt. Express 13, 6305-6309 (2005).
    [CrossRef] [PubMed]
  6. L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, "Gain-guided solitons in dispersion-managed fiber lasers with large net cavity dispersion," Opt. Lett. 31, 2957-2959 (2006).
    [CrossRef] [PubMed]
  7. L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, "Dynamics of gain guided solitons in an all-normal-dispersion fiber laser," Opt. Lett. 32, 1806-1808 (2007).
    [CrossRef] [PubMed]
  8. P. A. Bélanger, L. Gagnon, and C. Paré, "Solitary pulses in an amplified nonlinear dispersive medium," Opt. Lett. 14, 943-945 (1989).
    [CrossRef] [PubMed]
  9. W. K. Knox, N. M. Pearson, K. D. Li, and C. A. Hirlimann, "Interferometric measurement of femtosecond group delay in optical components," Opt. Lett. 13, 574-576 (1988).
    [CrossRef] [PubMed]
  10. A. Komarov, H. Leblond, and F. Sanchez, "Multistability and hysteresis phenomena in passively mode-locked fiber lasers," Phys. Rev. A 71, 053809 (2005).
    [CrossRef]
  11. G. Sucha, S. R. Bolton, S. Weiss, and D. S. Chemla, "Period doubling and quasi-periodicity in additive-pulse mode-locked lasers," Opt. Lett. 20, 1794-1796 (1995).
    [CrossRef] [PubMed]
  12. J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. W. Wise, "Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter," J. Opt. Soc. Am. B 24, 1803-1806 (2007).
    [CrossRef]
  13. E. Desurvire, Erbium-doped fiber amplifiers: principles and applications, (John Wiley and Sons, New York, 1994).
  14. R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973).
    [CrossRef]
  15. P.-A. Bélanger, "On the profile of pulses generated by fiber lasers: the highly-chirped positive dispersion regime (similariton)," Opt. Express 14, 12174-12182 (2006).
    [CrossRef] [PubMed]

2007

2006

2005

A. Komarov, H. Leblond, and F. Sanchez, "Multistability and hysteresis phenomena in passively mode-locked fiber lasers," Phys. Rev. A 71, 053809 (2005).
[CrossRef]

A. Ruehl, H. Hundertmark, D. Wandt, C. Fallnich, and D. Kracht, "0.7W all-fiber Erbium oscillator generating 64 fs wave breaking-free pulses," Opt. Express 13, 6305-6309 (2005).
[CrossRef] [PubMed]

2004

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

1995

1989

1988

1973

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973).
[CrossRef]

Bélanger, P. A.

Bélanger, P.-A.

Bolton, S. R.

Buckley, J.

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Burgoyne, B.

Chemla, D. S.

Cheng, T. H.

Chong, A.

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Fallnich, C.

Gagnon, L.

Godbout, N.

Hirlimann, C. A.

Hundertmark, H.

Ilday, F. Ö.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Ippen, E. P.

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973).
[CrossRef]

Knox, W. K.

Komarov, A.

A. Komarov, H. Leblond, and F. Sanchez, "Multistability and hysteresis phenomena in passively mode-locked fiber lasers," Phys. Rev. A 71, 053809 (2005).
[CrossRef]

Kracht, D.

Lacroix, S.

Leblond, H.

A. Komarov, H. Leblond, and F. Sanchez, "Multistability and hysteresis phenomena in passively mode-locked fiber lasers," Phys. Rev. A 71, 053809 (2005).
[CrossRef]

Li, K. D.

Limpert, J.

Lu, C.

Ortaç, B.

Paré, C.

Pearson, N. M.

Prochnow, O.

Renninger, W.

Renninger, W. H.

Ruehl, A.

Sanchez, F.

A. Komarov, H. Leblond, and F. Sanchez, "Multistability and hysteresis phenomena in passively mode-locked fiber lasers," Phys. Rev. A 71, 053809 (2005).
[CrossRef]

Schreiber, T.

Stolen, R. H.

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973).
[CrossRef]

Sucha, G.

Tam, H. Y.

Tang, D. Y.

Tünnermann, A.

Wandt, D.

Weiss, S.

Wise, F. W.

Zhang, H.

Zhao, L. M.

Zhou, S.

Appl. Phys. Lett.

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. A

A. Komarov, H. Leblond, and F. Sanchez, "Multistability and hysteresis phenomena in passively mode-locked fiber lasers," Phys. Rev. A 71, 053809 (2005).
[CrossRef]

Phys. Rev. Lett.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Other

E. Desurvire, Erbium-doped fiber amplifiers: principles and applications, (John Wiley and Sons, New York, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup. EDF: erbium-doped fiber; QWP: quarter wave-plate; HWP: half wave-plate; PBS: polarizing beam splitter; ISO: Faraday isolator; SMF: single-mode fiber; WDM: wavelength-division multiplexer.

Fig. 2.
Fig. 2.

(a) Output power and single pulse energy in respect to the pump power (the lines are just to guide the eye). (b) Optical spectrum at the maximum single pulse output power on logarithmic and linear scale, respectively.

Fig. 3.
Fig. 3.

(a) Main peak (circles) and decay of the optical spectrum at -10 dB (open triangles) and -20,dB (closed triangles) in respect to the pump power. (b) Normalized optical spectra measured at 1.3W (gray solid line) and 2.6W (black solid line) launched pump power together with the normalized Raman-gain spectrum assuming a pump wavelength of 1540 nm (dotted line).

Fig. 4.
Fig. 4.

(a) Autocorrelation trace of the chirped pulse (solid line) and Gaussian fit (dotted line). (b) Temporal profile (solid line) together with Gaussian fit (dotted line) and temporal phase, respectively measured by frequency resolved optical gating.

Metrics