Abstract

Measurements of a W-shaped metal-coated surface plasmon polariton waveguides are presented, showing complex confined modes both in the coupled pair of air filled metal V-grooves, as well as within the central metal-coated triangular silicon wedge. Mode calculations support the experimentally measured plasmonic modes. Such W-shaped plasmonic waveguides when integrated with Metal-Oxide-Silicon structures may be utilized for active plasmonic nano-optical devices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  3. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Skrzek, "Experimental observation of plasmon polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000).
    [CrossRef]
  4. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
    [CrossRef]
  5. Y. Satuby and M. Orenstein, "Surface-plasmon-polariton modes in deep metallic trenches- measurement and analysis," Opt. Express 15, 4247-4252 (2007).
    [CrossRef] [PubMed]
  6. E. Feigenbaum and M. Orenstein, "Modeling of complementary (void) plasmon waveguiding," J. Lightwave Technol. 25, 2547-2562 (2007).
    [CrossRef]
  7. D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004).
    [CrossRef] [PubMed]
  8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
    [CrossRef] [PubMed]
  9. T. Yatsui, M. Kourogi and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
    [CrossRef]
  10. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
    [CrossRef]
  11. E. Feigenbaum and M. Orenstein, "Nano plasmon polariton modes of a wedge cross section metal waveguide," Opt. Express 14, 8779-8784 (2006).
    [CrossRef] [PubMed]
  12. D. Arbel and M. Orenstein, "W-shaped Plasmon Waveguide for silicon based Plasmonic Modulator," in LEOS annual meeting 2006, Montréal, Canada, paper TuL-5.
    [CrossRef]
  13. L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, Berlin, 2004).

2007

Y. Satuby and M. Orenstein, "Surface-plasmon-polariton modes in deep metallic trenches- measurement and analysis," Opt. Express 15, 4247-4252 (2007).
[CrossRef] [PubMed]

E. Feigenbaum and M. Orenstein, "Modeling of complementary (void) plasmon waveguiding," J. Lightwave Technol. 25, 2547-2562 (2007).
[CrossRef]

2006

2005

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

2004

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

2001

T. Yatsui, M. Kourogi and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
[CrossRef]

2000

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Berini, P.

Berolo, E.

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

Charbonneau, R.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Feigenbaum, E.

E. Feigenbaum and M. Orenstein, "Modeling of complementary (void) plasmon waveguiding," J. Lightwave Technol. 25, 2547-2562 (2007).
[CrossRef]

E. Feigenbaum and M. Orenstein, "Nano plasmon polariton modes of a wedge cross section metal waveguide," Opt. Express 14, 8779-8784 (2006).
[CrossRef] [PubMed]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004).
[CrossRef] [PubMed]

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Kourogi, M.

T. Yatsui, M. Kourogi and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
[CrossRef]

Leosson, K.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

Lisicka-Skrzek, E.

Matsuo, S.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Nikolajsen, T.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Ohtsu, M.

T. Yatsui, M. Kourogi and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
[CrossRef]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Orenstein, M.

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004).
[CrossRef] [PubMed]

Salakhutdinov, I.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

Satuby, Y.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Yatsui, T.

T. Yatsui, M. Kourogi and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
[CrossRef]

J. Lightwave Technol.

E. Feigenbaum and M. Orenstein, "Modeling of complementary (void) plasmon waveguiding," J. Lightwave Technol. 25, 2547-2562 (2007).
[CrossRef]

Appl. Phys. Lett.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

T. Yatsui, M. Kourogi and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).

D. Arbel and M. Orenstein, "W-shaped Plasmon Waveguide for silicon based Plasmonic Modulator," in LEOS annual meeting 2006, Montréal, Canada, paper TuL-5.
[CrossRef]

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, Berlin, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

A conceptual drawing of a W-shaped plasmon MOS based optical modulator. The coupled V-grooves plasmon modes in air and the Λ plasmon mode in silicon are marked.

Fig. 2.
Fig. 2.

(a) SEM image of the W-shaped silicon wedge in process, showing also the silicon-nitride etch mask. (b) Optical image of the W-shaped plasmon waveguide sample.

Fig. 3.
Fig. 3.

(a) SEM image of V-groove plasmon waveguide. (b),(c) Measured output light vs. polarization.

Fig. 4.
Fig. 4.

Measured output light distribution from W-shaped plasmon waveguide, input polarization indicated by the arrow in (a). Output polarization is (a) random, (b) Horizontal, (c) Vertical.

Fig. 5.
Fig. 5.

Calculated fields of the V-groove for the zero order mode (a) Horizontal, (b) Vertical polarizations.

Fig. 6.
Fig. 6.

Calculated Hy modal fields of the W-shaped plasmon waveguide, exhibiting 4 guided plasmon modes.

Fig. 7.
Fig. 7.

The real part of plasmon modes effective index for the different sub-structures comprising the W structure. Their coupling is evident from the supermodes of the complete structure. (a) nREAL vs. head angle of the for a triangular gold wedge. (b) Isolated triangular gold wedge with a head angle of 70.5° (central part of W). (c) Isolated triangular gold wedge with a head angle of 125.3° (side part of the W). (d) Single V-groove. (e) All the modes of the W-wedge.

Fig. 8.
Fig. 8.

Intensity distribution of the 3rd order mode of the coupled air-Au V waveguides - (a) horizontal, (b) vertical polarizations. Insets: respective experimental results (same as figs. 4b,c).

Fig. 9.
Fig. 9.

Lowest order mode of the gold coated silicon wedge, tightly confined to the wedge tip.

Metrics