Abstract

This work presents an analysis and simulation of novel heterogeneous silicon-on-insulator (SOI) waveguide structures for reconfigurable optical add/drop multiplexers (ROADMs) with thermo-optic tuning and multi-reflector beam expanders. New structure design includes p + side-doping of SOI ridge waveguide with 220 nm×16 µm silicon core. It provides quasi mono-mode behavior due to strongly mode-dependent optical losses by free charge absorption. These silicon heterogeneous waveguides are used to investigate ROADMs including nano-structured 2D-gratings for fiber coupling and polarization diversity, nano-grooves or p + doping reflector strips for multi-reflector beam expanders and local heaters for wideband thermo-optic tuning.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, and R. Baets, "A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires," Opt. Express 15, 1567-1578 (2007).
    [CrossRef] [PubMed]
  2. W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, "Compact wavelength-selective functions in silicon-on-insulator photonic wires," IEEE J. Sel. Top. Quantum Electron. 12, 1394-1401 (2006).
    [CrossRef]
  3. P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, "Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array," Opt. Express 14, 664-669 (2006).
    [CrossRef] [PubMed]
  4. T. Fukazawa, F. Ohno, and T. Baba, "Very compact arrayed-waveguide grating demultiplexer using Si photonic wire waveguides," Jpn. J. Appl. Phys. 43, L673-L675 (2004).
    [CrossRef]
  5. J. Floriot, F. Lemarchand, and M. Lequime, "Tunable double-cavity solid-spaced bandpass filter," Opt. Express 12, 6289-6298 (2004).
    [CrossRef] [PubMed]
  6. Y. Zhu, P. Shum, C. Lu, P. Swart, B. Lacquet, and S. Spammer, "Promising compact wavelength-tunable optical add-drop multiplexer in dense wavelength-division multiplexing systems," Opt. Lett. 29, 682-684 (2004).
    [CrossRef] [PubMed]
  7. C. Doerr, L. Stulz, D. Levy, R. Pafchek, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Chen, E. Laskowski, G. Bogert, and G. Richards, "Wavelength add-drop node using silica waveguide integration," J. Lightwave Technol. 22, 2755-2762 (2004).
    [CrossRef]
  8. P. Tang, O. Eknoyan, and H. Taylor, "Rapidly Tunable Optical Add-Drop Multiplexer (OADM) using a static-strain-induced grating in LiNbO3," J. Lightwave Technol. 21, 236-245 (2003).
    [CrossRef]
  9. L. Eldada, "Polymer integrated optics: promise versus practicality," Proc. SPIE 4642, 11-22 (2002).
    [CrossRef]
  10. S. Toyoda, N. Ooba, T. Kitoh, T. Kurihara and T. Maruno, "Wide tuning range and low operating power AWG-based thermo-optic wavelength tunable filter using polymer waveguides," Electron. Lett. 37, 1130-1132 (2001).
    [CrossRef]
  11. V. M. N. Passaro, F. Magno, and A. Tsarev, "Investigation of thermo-optic effect and multireflector tunable filter/multiplexer in SOI waveguides," Opt. Express 13, 3429-3437 (2005).
    [CrossRef] [PubMed]
  12. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout "Nanophotonic waveguides in silicon-on-insulator fabricated CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
    [CrossRef]
  13. A. V. Tsarev, "New type of heterogeneous nanophotonic silicon-on-insulator optical waveguides," Quantum Electron. (Rus) 37, 775-776 (2007).
    [CrossRef]
  14. A. V. Tsarev, V. M. N. Passaro, and F. Magno, "Widely tunable reconfigurable optical add/drop multiplexers in silicon-on-insulator technology: a new approach," in Silicon Photonics, V. M. N. Passaro, ed., (Research Signpost; Kerala, India, 2006) 47-77. ISBN: 81-308-0077-2
  15. A. V. Tsarev "Peculiarity of multi-reflector filtering technology," Proc. 13th European Conf. on Integrated Optics and Technical Exhibition, Copenhagen, Denmark, ThG23 (2007).
  16. A. V. Tsarev, "Tunable optical filters," United States Patent No 6,999,639, February 14, 2006.
  17. A. V. Tsarev, "Beam-expanding device," United States Patent No 6,836,601, December 28, 2004.
  18. Comsol Multiphysics by COMSOL ©, ver. 3.2, single license (2005).
  19. BeamProp 8.0 and FullWave 6.0 by RSoft Design Group Inc., single license (2007).
  20. D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
    [CrossRef]
  21. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
    [CrossRef]
  22. G. Cocorullo, M. Iodice, and I. Rendina, "All-silicon Fabry-Perot modulator based on the termo-optic effect," Opt. Lett. 19, 420-422 (1994).
    [PubMed]

2007 (2)

2006 (2)

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, "Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array," Opt. Express 14, 664-669 (2006).
[CrossRef] [PubMed]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, "Compact wavelength-selective functions in silicon-on-insulator photonic wires," IEEE J. Sel. Top. Quantum Electron. 12, 1394-1401 (2006).
[CrossRef]

2005 (2)

2004 (4)

2003 (2)

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

P. Tang, O. Eknoyan, and H. Taylor, "Rapidly Tunable Optical Add-Drop Multiplexer (OADM) using a static-strain-induced grating in LiNbO3," J. Lightwave Technol. 21, 236-245 (2003).
[CrossRef]

2002 (1)

L. Eldada, "Polymer integrated optics: promise versus practicality," Proc. SPIE 4642, 11-22 (2002).
[CrossRef]

2001 (1)

S. Toyoda, N. Ooba, T. Kitoh, T. Kurihara and T. Maruno, "Wide tuning range and low operating power AWG-based thermo-optic wavelength tunable filter using polymer waveguides," Electron. Lett. 37, 1130-1132 (2001).
[CrossRef]

1994 (1)

1987 (1)

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

Baba, T.

T. Fukazawa, F. Ohno, and T. Baba, "Very compact arrayed-waveguide grating demultiplexer using Si photonic wire waveguides," Jpn. J. Appl. Phys. 43, L673-L675 (2004).
[CrossRef]

Baets, R.

Beckx, S.

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

Bienstman, P.

Bogaerts, W.

Bogert, G.

Borel, P.

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Cappuzzo, M.

Chen, E.

Chong, H.

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Cocorullo, G.

De La Rue, R.

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Doerr, C.

Dumon, P.

Eknoyan, O.

Eldada, L.

L. Eldada, "Polymer integrated optics: promise versus practicality," Proc. SPIE 4642, 11-22 (2002).
[CrossRef]

Floriot, J.

Frandsen, L.

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Fukazawa, T.

T. Fukazawa, F. Ohno, and T. Baba, "Very compact arrayed-waveguide grating demultiplexer using Si photonic wire waveguides," Jpn. J. Appl. Phys. 43, L673-L675 (2004).
[CrossRef]

Gomez, L.

Iodice, M.

Jaenen, P.

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, "Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array," Opt. Express 14, 664-669 (2006).
[CrossRef] [PubMed]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, "Compact wavelength-selective functions in silicon-on-insulator photonic wires," IEEE J. Sel. Top. Quantum Electron. 12, 1394-1401 (2006).
[CrossRef]

Kitoh, T.

S. Toyoda, N. Ooba, T. Kitoh, T. Kurihara and T. Maruno, "Wide tuning range and low operating power AWG-based thermo-optic wavelength tunable filter using polymer waveguides," Electron. Lett. 37, 1130-1132 (2001).
[CrossRef]

Kurihara, T.

S. Toyoda, N. Ooba, T. Kitoh, T. Kurihara and T. Maruno, "Wide tuning range and low operating power AWG-based thermo-optic wavelength tunable filter using polymer waveguides," Electron. Lett. 37, 1130-1132 (2001).
[CrossRef]

Lacquet, B.

Laskowski, E.

Lemarchand, F.

Lequime, M.

Levy, D.

Lu, C.

Luyssaert, B.

Magno, F.

Maruno, T.

S. Toyoda, N. Ooba, T. Kitoh, T. Kurihara and T. Maruno, "Wide tuning range and low operating power AWG-based thermo-optic wavelength tunable filter using polymer waveguides," Electron. Lett. 37, 1130-1132 (2001).
[CrossRef]

Ohno, F.

T. Fukazawa, F. Ohno, and T. Baba, "Very compact arrayed-waveguide grating demultiplexer using Si photonic wire waveguides," Jpn. J. Appl. Phys. 43, L673-L675 (2004).
[CrossRef]

Ooba, N.

S. Toyoda, N. Ooba, T. Kitoh, T. Kurihara and T. Maruno, "Wide tuning range and low operating power AWG-based thermo-optic wavelength tunable filter using polymer waveguides," Electron. Lett. 37, 1130-1132 (2001).
[CrossRef]

Pafchek, R.

Passaro, V. M. N.

Rendina, I.

Richards, G.

Shum, P.

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

Spammer, S.

Stulz, L.

Swart, P.

Taillaert, D.

Tang, P.

Taylor, H.

Toyoda, S.

S. Toyoda, N. Ooba, T. Kitoh, T. Kurihara and T. Maruno, "Wide tuning range and low operating power AWG-based thermo-optic wavelength tunable filter using polymer waveguides," Electron. Lett. 37, 1130-1132 (2001).
[CrossRef]

Tsarev, A.

Tsarev, A. V.

A. V. Tsarev, "New type of heterogeneous nanophotonic silicon-on-insulator optical waveguides," Quantum Electron. (Rus) 37, 775-776 (2007).
[CrossRef]

Van Campenhout, J.

Van Thourhout, D.

Wiaux, V.

Wong-Foy, A.

Wouters, J.

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, "Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array," Opt. Express 14, 664-669 (2006).
[CrossRef] [PubMed]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, "Compact wavelength-selective functions in silicon-on-insulator photonic wires," IEEE J. Sel. Top. Quantum Electron. 12, 1394-1401 (2006).
[CrossRef]

Zhu, Y.

Electron. Lett. (1)

S. Toyoda, N. Ooba, T. Kitoh, T. Kurihara and T. Maruno, "Wide tuning range and low operating power AWG-based thermo-optic wavelength tunable filter using polymer waveguides," Electron. Lett. 37, 1130-1132 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, "Compact wavelength-selective functions in silicon-on-insulator photonic wires," IEEE J. Sel. Top. Quantum Electron. 12, 1394-1401 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

J. Lightwave Technol. (3)

Jpn. J. Appl. Phys. (1)

T. Fukazawa, F. Ohno, and T. Baba, "Very compact arrayed-waveguide grating demultiplexer using Si photonic wire waveguides," Jpn. J. Appl. Phys. 43, L673-L675 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Proc. SPIE (1)

L. Eldada, "Polymer integrated optics: promise versus practicality," Proc. SPIE 4642, 11-22 (2002).
[CrossRef]

Quantum Electron. (Rus) (1)

A. V. Tsarev, "New type of heterogeneous nanophotonic silicon-on-insulator optical waveguides," Quantum Electron. (Rus) 37, 775-776 (2007).
[CrossRef]

Other (6)

A. V. Tsarev, V. M. N. Passaro, and F. Magno, "Widely tunable reconfigurable optical add/drop multiplexers in silicon-on-insulator technology: a new approach," in Silicon Photonics, V. M. N. Passaro, ed., (Research Signpost; Kerala, India, 2006) 47-77. ISBN: 81-308-0077-2

A. V. Tsarev "Peculiarity of multi-reflector filtering technology," Proc. 13th European Conf. on Integrated Optics and Technical Exhibition, Copenhagen, Denmark, ThG23 (2007).

A. V. Tsarev, "Tunable optical filters," United States Patent No 6,999,639, February 14, 2006.

A. V. Tsarev, "Beam-expanding device," United States Patent No 6,836,601, December 28, 2004.

Comsol Multiphysics by COMSOL ©, ver. 3.2, single license (2005).

BeamProp 8.0 and FullWave 6.0 by RSoft Design Group Inc., single license (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

General view of thermo-optic MR-ROADM in SOI technology.

Fig. 2.
Fig. 2.

Heterogeneous SOI waveguide. Parameters are h=220 nm, Hb =1 µm, W=6–10 µm, Wg =4–8 µm, HSiO2 =2 µm, HAl =0.2 µm, Nsi =3.478, Nsi02 =1.447.

Fig. 3.
Fig. 3.

Re[n(x)] and mode field distribution of heterogeneous SOI waveguide (W=8 µm, Wg=4 µm). Effective indices are Nm=2.851325+0.0000065i (m=0), Nm=2.849507+0.0000244i (m=1), Nm=2.847083+0.0000417i (m=2). Simulations made by 2D BPM mode solver [19].

Fig. 4.
Fig. 4.

Optical losses for different modes of ridge waveguide as a function of p + doped regions width Wg. Simulations made by 2D BPM mode solver [19].

Fig. 5.
Fig. 5.

Dependence of power reflection and transmitting coefficients as a function of Δn=Δnh . (2D FDTD simulation).

Fig. 6.
Fig. 6.

Amplitude of power reflection coefficient for fundamental TM0 mode as a function of incident angle on the deep groove. Solid dots describes reflection only for the fundamental TM0 mode. Open dots describe the reflection coefficient for all modes (2D FDTD simulation, waveguide width 10 µm).

Fig. 7.
Fig. 7.

Temperature distribution in the SOI structure around the aluminum heater (placed as in Fig. 2 with H=0.1 µm). Heater temperature 310 K, surrounding temperature 300 K (w=8 µm, W=8 µm, Wg =8 µm).

Fig. 8.
Fig. 8.

Temperature response versus time in the center of SOI waveguide for various structure parameters. Inward heat flux is a step function impulse of 10 µs with an amplitude 10+7 W/m2.

Fig. 9.
Fig. 9.

Temperature distribution at different time instants (-2, 0.5, 1, 2, 4, 8 µs) in the SOI structure around the aluminum heater: a) as a function of x horizontal direction at y=0; b) as a function of y vertical direction at x=0. Time measured from the start of impulse with duration 10 µs (heating process). Inward heat flux 10+7 W/m2, w=8 µm, W=8 µm, Wg =4 µm.

Fig. 10.
Fig. 10.

Temperature distribution at different time instants (-2, 0.5, 1, 2, 4, 8 µs) in the SOI structure around the aluminum heater: a) as a function of x horizontal direction at y=0; b) as a function of y vertical direction at x=0. Time measured from the end of impulse with duration 10 µs (cooling process). Inward heat flux 10+7 W/m2, w=8 µm, W=8 µm, Wg =4 µm.

Fig. 11.
Fig. 11.

2D FDTD simulation of MR-ROADM frequency response with 16 slanted reflectors (φ=45°) for TM polarization. FWHM=4.3 nm. FSR=50 nm. W=4 µm, n(reflector)=1.447, dx =8 µm, dz =16 µm. Variable reflector width from 30 nm to 80 nm.

Fig. 12.
Fig. 12.

2D FDTD simulation of MR-ROADM with 16 slanted reflectors (φ=45°) for TM polarization. (a) Optical beam propagation at Drop wavelength (1.482 µm), (b) Optical beam propagation at Through wavelength (1.4925 µm). FWHM=4.3 nm. FSR=50 nm. W=4 µm, n(reflector)=1.447, dx =8 µm, dz =16 µm. Variable reflector width from 30 nm to 80 nm.

Fig. 13.
Fig. 13.

Dependence of the corner reflection as a function of the waveguide shift (D2) at different incident angles (30°, 45°, 60°). 2D FDTD simulation.

Fig. 14.
Fig. 14.

Part of general design of nano-scale SOI MR-ROADM.

Tables (3)

Tables Icon

Table 1. Comparison of 2D BPM and FDTD simulations for the structure in Fig.3.

Tables Icon

Table 2. Thermo-physical constants used in the simulations [22].

Tables Icon

Table 3. Thermo-physical simulation of SOI structure.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ α e = 0.12 × Δ n e
Δα h = 0.16 × Δn h 5 4
Δ n c = Δ n + in
q = k T
L eff = λ ( 2 n T Δ T ) .
P π = q o wL eff
T ( t ) = T 0 for t < t 1
T ( t ) = T 0 + Δ T { 1 exp [ ( t t 1 ) τ 1 ] } for t 1 < t < t 2
T ( t ) = T 0 + Δ T exp [ ( t t 2 ) τ 2 ] for t > t 2

Metrics