Abstract

Single-photon detectors operating at visible and near-infrared wavelengths with high detection efficiency and low noise are a requirement for many quantum-information applications. Superconducting transition-edge sensors (TESs) are capable of detecting visible and near-infrared light at the single-photon level and are capable of discriminating between one-and two-photon absorption events; however these capabilities place stringent design requirements on the TES heat capacity, thermometry, and optical detection efficiency. We describe the fabrication and evaluation of a fiber-coupled, photon-number-resolving TES detector optimized for absorption at 1550 and 1310 nm wavelengths. The measured system detection efficiency at 1556 nm is 95 %±2 %, which to our knowledge is the highest system detection efficiency reported for a near-infrared single-photon detector.

Work of US government: not subject to US copyright

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Migdal, D. Branning, and S. Castelletto, "Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source," Phys. Rev. A 66, 053805 (2002).
    [CrossRef]
  2. D. Bouwmeester, "Quantum physics - high noon for photons," Nature 429, 139-141 (2004).
    [CrossRef] [PubMed]
  3. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
    [CrossRef] [PubMed]
  4. P. A. Hiskett D. Rosenberg, C. G. Peterson, R. J. Hughes, S. Nam, A. E. Lita, A. J. Miller and J. E. Nordholt, "Long distance quantum key distribution in optical fibre," New J. Phys. 8, 193 (2006).
    [CrossRef]
  5. A. K. Ekert, "Quantum cryptography based on Bell’s theorem, " Phys. Rev. Lett. 67, 661-663 (1991), C.H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without Bell’s theorem," Phys. Rev. Lett. 68, 557-559 (1992).
    [CrossRef] [PubMed]
  6. D. C. Burnham and D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84-87 (1970).
    [CrossRef]
  7. D. Rosenberg, S. Nam, A. J. Miller, A. Salminen, E. Grossman, R. E. Schwall, and J. M. Martinis, "Near-unity absorption of near-infrared light in tungsten films," Nucl. Instrum. Methods Phys. Res. A 520, 537-540, (2004).
    [CrossRef]
  8. B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735-737 (1998).
    [CrossRef]
  9. A. J. Miller, S. Nam, J. M. Martinis and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett.,  83, 791-793 (2003).
    [CrossRef]
  10. D. Rosenberg, A. E. Lita, A. J. Miller and S. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys Rev. A 71, 061803 (2005).
    [CrossRef]
  11. A. E. Lita, D. Rosenberg, S. Nam, A. J. Miller, D. Balzar, L. M. Kaatz, and R. E. Schwall, "Tuning of tungsten thin film superconducting transition temperature for fabrication of photon number resolving detectors," IEEE Trans. Appl. Supercond. 15, 3528-3531 (2005).
    [CrossRef]
  12. R. Ohba, I. Uehira and S. Kakuma, "Interferometric determination of a static optical path difference using a frequency swept laser diode," Meas. Sci. Technol. 1, 500-504 (1990).
    [CrossRef]
  13. K. D. Irwin, "An application of electrothermal feedback for high resolution cryogenic particle detection," Appl. Phys. Lett. 66, 1998-2000 (1995).
    [CrossRef]
  14. M. E. Huber, A. M. Corey, K. L. Lumpkins, F. N. Nafe, J. O. Rantschler, G. C. Hilton, J. M. Martinis, and A. H. Steinbach, "DC SQUID series arrays with intracoil damping to reduce resonance distortions," Appl. Supercond. 5, 425 (1998)
    [CrossRef]
  15. J. N. Ullom, W. B. Doriese, G. C. Hilton, J. A. Beall, S. Deiker, W. D. Duncan, L. Ferreira, K. D. Irwin, C. D. Reintsema, and L. R. Vale, "Characterization and reduction of unexplained noise in superconducting transition-edge sensors, "Appl. Phys. Lett. 84, 4206-4208 (2004).
    [CrossRef]
  16. A. J. Miller, A. E. Lita, D. Rosenberg, S. Gruber, and S. Nam, "Superconducting photon number resolving detectors: performance and promise," Proceedings of the 8th International Conference on Quantum Communication, Measurement and Computing, J. O. Hirota, H. Shapiro and M. Sasaki, Eds., NICT Press, 445-450, (2007).
    [PubMed]

2006 (1)

P. A. Hiskett D. Rosenberg, C. G. Peterson, R. J. Hughes, S. Nam, A. E. Lita, A. J. Miller and J. E. Nordholt, "Long distance quantum key distribution in optical fibre," New J. Phys. 8, 193 (2006).
[CrossRef]

2005 (2)

D. Rosenberg, A. E. Lita, A. J. Miller and S. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys Rev. A 71, 061803 (2005).
[CrossRef]

A. E. Lita, D. Rosenberg, S. Nam, A. J. Miller, D. Balzar, L. M. Kaatz, and R. E. Schwall, "Tuning of tungsten thin film superconducting transition temperature for fabrication of photon number resolving detectors," IEEE Trans. Appl. Supercond. 15, 3528-3531 (2005).
[CrossRef]

2004 (3)

J. N. Ullom, W. B. Doriese, G. C. Hilton, J. A. Beall, S. Deiker, W. D. Duncan, L. Ferreira, K. D. Irwin, C. D. Reintsema, and L. R. Vale, "Characterization and reduction of unexplained noise in superconducting transition-edge sensors, "Appl. Phys. Lett. 84, 4206-4208 (2004).
[CrossRef]

D. Bouwmeester, "Quantum physics - high noon for photons," Nature 429, 139-141 (2004).
[CrossRef] [PubMed]

D. Rosenberg, S. Nam, A. J. Miller, A. Salminen, E. Grossman, R. E. Schwall, and J. M. Martinis, "Near-unity absorption of near-infrared light in tungsten films," Nucl. Instrum. Methods Phys. Res. A 520, 537-540, (2004).
[CrossRef]

2003 (1)

A. J. Miller, S. Nam, J. M. Martinis and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett.,  83, 791-793 (2003).
[CrossRef]

2002 (1)

A. L. Migdal, D. Branning, and S. Castelletto, "Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source," Phys. Rev. A 66, 053805 (2002).
[CrossRef]

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

1998 (2)

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735-737 (1998).
[CrossRef]

M. E. Huber, A. M. Corey, K. L. Lumpkins, F. N. Nafe, J. O. Rantschler, G. C. Hilton, J. M. Martinis, and A. H. Steinbach, "DC SQUID series arrays with intracoil damping to reduce resonance distortions," Appl. Supercond. 5, 425 (1998)
[CrossRef]

1995 (1)

K. D. Irwin, "An application of electrothermal feedback for high resolution cryogenic particle detection," Appl. Phys. Lett. 66, 1998-2000 (1995).
[CrossRef]

1992 (1)

A. K. Ekert, "Quantum cryptography based on Bell’s theorem, " Phys. Rev. Lett. 67, 661-663 (1991), C.H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without Bell’s theorem," Phys. Rev. Lett. 68, 557-559 (1992).
[CrossRef] [PubMed]

1990 (1)

R. Ohba, I. Uehira and S. Kakuma, "Interferometric determination of a static optical path difference using a frequency swept laser diode," Meas. Sci. Technol. 1, 500-504 (1990).
[CrossRef]

1970 (1)

D. C. Burnham and D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84-87 (1970).
[CrossRef]

Balzar, D.

A. E. Lita, D. Rosenberg, S. Nam, A. J. Miller, D. Balzar, L. M. Kaatz, and R. E. Schwall, "Tuning of tungsten thin film superconducting transition temperature for fabrication of photon number resolving detectors," IEEE Trans. Appl. Supercond. 15, 3528-3531 (2005).
[CrossRef]

Beall, J. A.

J. N. Ullom, W. B. Doriese, G. C. Hilton, J. A. Beall, S. Deiker, W. D. Duncan, L. Ferreira, K. D. Irwin, C. D. Reintsema, and L. R. Vale, "Characterization and reduction of unexplained noise in superconducting transition-edge sensors, "Appl. Phys. Lett. 84, 4206-4208 (2004).
[CrossRef]

Bouwmeester, D.

D. Bouwmeester, "Quantum physics - high noon for photons," Nature 429, 139-141 (2004).
[CrossRef] [PubMed]

Branning, D.

A. L. Migdal, D. Branning, and S. Castelletto, "Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source," Phys. Rev. A 66, 053805 (2002).
[CrossRef]

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84-87 (1970).
[CrossRef]

Cabrera, B.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735-737 (1998).
[CrossRef]

Castelletto, S.

A. L. Migdal, D. Branning, and S. Castelletto, "Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source," Phys. Rev. A 66, 053805 (2002).
[CrossRef]

Clarke, R. M.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735-737 (1998).
[CrossRef]

Colling, P.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735-737 (1998).
[CrossRef]

Corey, A. M.

M. E. Huber, A. M. Corey, K. L. Lumpkins, F. N. Nafe, J. O. Rantschler, G. C. Hilton, J. M. Martinis, and A. H. Steinbach, "DC SQUID series arrays with intracoil damping to reduce resonance distortions," Appl. Supercond. 5, 425 (1998)
[CrossRef]

Deiker, S.

J. N. Ullom, W. B. Doriese, G. C. Hilton, J. A. Beall, S. Deiker, W. D. Duncan, L. Ferreira, K. D. Irwin, C. D. Reintsema, and L. R. Vale, "Characterization and reduction of unexplained noise in superconducting transition-edge sensors, "Appl. Phys. Lett. 84, 4206-4208 (2004).
[CrossRef]

Doriese, W. B.

J. N. Ullom, W. B. Doriese, G. C. Hilton, J. A. Beall, S. Deiker, W. D. Duncan, L. Ferreira, K. D. Irwin, C. D. Reintsema, and L. R. Vale, "Characterization and reduction of unexplained noise in superconducting transition-edge sensors, "Appl. Phys. Lett. 84, 4206-4208 (2004).
[CrossRef]

Duncan, W. D.

J. N. Ullom, W. B. Doriese, G. C. Hilton, J. A. Beall, S. Deiker, W. D. Duncan, L. Ferreira, K. D. Irwin, C. D. Reintsema, and L. R. Vale, "Characterization and reduction of unexplained noise in superconducting transition-edge sensors, "Appl. Phys. Lett. 84, 4206-4208 (2004).
[CrossRef]

Ekert, A. K.

A. K. Ekert, "Quantum cryptography based on Bell’s theorem, " Phys. Rev. Lett. 67, 661-663 (1991), C.H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without Bell’s theorem," Phys. Rev. Lett. 68, 557-559 (1992).
[CrossRef] [PubMed]

Ferreira, L.

J. N. Ullom, W. B. Doriese, G. C. Hilton, J. A. Beall, S. Deiker, W. D. Duncan, L. Ferreira, K. D. Irwin, C. D. Reintsema, and L. R. Vale, "Characterization and reduction of unexplained noise in superconducting transition-edge sensors, "Appl. Phys. Lett. 84, 4206-4208 (2004).
[CrossRef]

Grossman, E.

D. Rosenberg, S. Nam, A. J. Miller, A. Salminen, E. Grossman, R. E. Schwall, and J. M. Martinis, "Near-unity absorption of near-infrared light in tungsten films," Nucl. Instrum. Methods Phys. Res. A 520, 537-540, (2004).
[CrossRef]

Hilton, G. C.

J. N. Ullom, W. B. Doriese, G. C. Hilton, J. A. Beall, S. Deiker, W. D. Duncan, L. Ferreira, K. D. Irwin, C. D. Reintsema, and L. R. Vale, "Characterization and reduction of unexplained noise in superconducting transition-edge sensors, "Appl. Phys. Lett. 84, 4206-4208 (2004).
[CrossRef]

M. E. Huber, A. M. Corey, K. L. Lumpkins, F. N. Nafe, J. O. Rantschler, G. C. Hilton, J. M. Martinis, and A. H. Steinbach, "DC SQUID series arrays with intracoil damping to reduce resonance distortions," Appl. Supercond. 5, 425 (1998)
[CrossRef]

Huber, M. E.

M. E. Huber, A. M. Corey, K. L. Lumpkins, F. N. Nafe, J. O. Rantschler, G. C. Hilton, J. M. Martinis, and A. H. Steinbach, "DC SQUID series arrays with intracoil damping to reduce resonance distortions," Appl. Supercond. 5, 425 (1998)
[CrossRef]

Irwin, K. D.

J. N. Ullom, W. B. Doriese, G. C. Hilton, J. A. Beall, S. Deiker, W. D. Duncan, L. Ferreira, K. D. Irwin, C. D. Reintsema, and L. R. Vale, "Characterization and reduction of unexplained noise in superconducting transition-edge sensors, "Appl. Phys. Lett. 84, 4206-4208 (2004).
[CrossRef]

K. D. Irwin, "An application of electrothermal feedback for high resolution cryogenic particle detection," Appl. Phys. Lett. 66, 1998-2000 (1995).
[CrossRef]

Kaatz, L. M.

A. E. Lita, D. Rosenberg, S. Nam, A. J. Miller, D. Balzar, L. M. Kaatz, and R. E. Schwall, "Tuning of tungsten thin film superconducting transition temperature for fabrication of photon number resolving detectors," IEEE Trans. Appl. Supercond. 15, 3528-3531 (2005).
[CrossRef]

Kakuma, S.

R. Ohba, I. Uehira and S. Kakuma, "Interferometric determination of a static optical path difference using a frequency swept laser diode," Meas. Sci. Technol. 1, 500-504 (1990).
[CrossRef]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

Lita, A. E.

A. E. Lita, D. Rosenberg, S. Nam, A. J. Miller, D. Balzar, L. M. Kaatz, and R. E. Schwall, "Tuning of tungsten thin film superconducting transition temperature for fabrication of photon number resolving detectors," IEEE Trans. Appl. Supercond. 15, 3528-3531 (2005).
[CrossRef]

D. Rosenberg, A. E. Lita, A. J. Miller and S. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys Rev. A 71, 061803 (2005).
[CrossRef]

Lumpkins, K. L.

M. E. Huber, A. M. Corey, K. L. Lumpkins, F. N. Nafe, J. O. Rantschler, G. C. Hilton, J. M. Martinis, and A. H. Steinbach, "DC SQUID series arrays with intracoil damping to reduce resonance distortions," Appl. Supercond. 5, 425 (1998)
[CrossRef]

Martinis, J. M.

D. Rosenberg, S. Nam, A. J. Miller, A. Salminen, E. Grossman, R. E. Schwall, and J. M. Martinis, "Near-unity absorption of near-infrared light in tungsten films," Nucl. Instrum. Methods Phys. Res. A 520, 537-540, (2004).
[CrossRef]

A. J. Miller, S. Nam, J. M. Martinis and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett.,  83, 791-793 (2003).
[CrossRef]

M. E. Huber, A. M. Corey, K. L. Lumpkins, F. N. Nafe, J. O. Rantschler, G. C. Hilton, J. M. Martinis, and A. H. Steinbach, "DC SQUID series arrays with intracoil damping to reduce resonance distortions," Appl. Supercond. 5, 425 (1998)
[CrossRef]

Migdal, A. L.

A. L. Migdal, D. Branning, and S. Castelletto, "Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source," Phys. Rev. A 66, 053805 (2002).
[CrossRef]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

Miller, A. J.

A. E. Lita, D. Rosenberg, S. Nam, A. J. Miller, D. Balzar, L. M. Kaatz, and R. E. Schwall, "Tuning of tungsten thin film superconducting transition temperature for fabrication of photon number resolving detectors," IEEE Trans. Appl. Supercond. 15, 3528-3531 (2005).
[CrossRef]

D. Rosenberg, A. E. Lita, A. J. Miller and S. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys Rev. A 71, 061803 (2005).
[CrossRef]

D. Rosenberg, S. Nam, A. J. Miller, A. Salminen, E. Grossman, R. E. Schwall, and J. M. Martinis, "Near-unity absorption of near-infrared light in tungsten films," Nucl. Instrum. Methods Phys. Res. A 520, 537-540, (2004).
[CrossRef]

A. J. Miller, S. Nam, J. M. Martinis and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett.,  83, 791-793 (2003).
[CrossRef]

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735-737 (1998).
[CrossRef]

Nafe, F. N.

M. E. Huber, A. M. Corey, K. L. Lumpkins, F. N. Nafe, J. O. Rantschler, G. C. Hilton, J. M. Martinis, and A. H. Steinbach, "DC SQUID series arrays with intracoil damping to reduce resonance distortions," Appl. Supercond. 5, 425 (1998)
[CrossRef]

Nam, S.

A. E. Lita, D. Rosenberg, S. Nam, A. J. Miller, D. Balzar, L. M. Kaatz, and R. E. Schwall, "Tuning of tungsten thin film superconducting transition temperature for fabrication of photon number resolving detectors," IEEE Trans. Appl. Supercond. 15, 3528-3531 (2005).
[CrossRef]

D. Rosenberg, A. E. Lita, A. J. Miller and S. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys Rev. A 71, 061803 (2005).
[CrossRef]

D. Rosenberg, S. Nam, A. J. Miller, A. Salminen, E. Grossman, R. E. Schwall, and J. M. Martinis, "Near-unity absorption of near-infrared light in tungsten films," Nucl. Instrum. Methods Phys. Res. A 520, 537-540, (2004).
[CrossRef]

A. J. Miller, S. Nam, J. M. Martinis and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett.,  83, 791-793 (2003).
[CrossRef]

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735-737 (1998).
[CrossRef]

Ohba, R.

R. Ohba, I. Uehira and S. Kakuma, "Interferometric determination of a static optical path difference using a frequency swept laser diode," Meas. Sci. Technol. 1, 500-504 (1990).
[CrossRef]

Rantschler, J. O.

M. E. Huber, A. M. Corey, K. L. Lumpkins, F. N. Nafe, J. O. Rantschler, G. C. Hilton, J. M. Martinis, and A. H. Steinbach, "DC SQUID series arrays with intracoil damping to reduce resonance distortions," Appl. Supercond. 5, 425 (1998)
[CrossRef]

Reintsema, C. D.

J. N. Ullom, W. B. Doriese, G. C. Hilton, J. A. Beall, S. Deiker, W. D. Duncan, L. Ferreira, K. D. Irwin, C. D. Reintsema, and L. R. Vale, "Characterization and reduction of unexplained noise in superconducting transition-edge sensors, "Appl. Phys. Lett. 84, 4206-4208 (2004).
[CrossRef]

Romani, R. W.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735-737 (1998).
[CrossRef]

Rosenberg, D.

D. Rosenberg, A. E. Lita, A. J. Miller and S. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys Rev. A 71, 061803 (2005).
[CrossRef]

A. E. Lita, D. Rosenberg, S. Nam, A. J. Miller, D. Balzar, L. M. Kaatz, and R. E. Schwall, "Tuning of tungsten thin film superconducting transition temperature for fabrication of photon number resolving detectors," IEEE Trans. Appl. Supercond. 15, 3528-3531 (2005).
[CrossRef]

D. Rosenberg, S. Nam, A. J. Miller, A. Salminen, E. Grossman, R. E. Schwall, and J. M. Martinis, "Near-unity absorption of near-infrared light in tungsten films," Nucl. Instrum. Methods Phys. Res. A 520, 537-540, (2004).
[CrossRef]

Salminen, A.

D. Rosenberg, S. Nam, A. J. Miller, A. Salminen, E. Grossman, R. E. Schwall, and J. M. Martinis, "Near-unity absorption of near-infrared light in tungsten films," Nucl. Instrum. Methods Phys. Res. A 520, 537-540, (2004).
[CrossRef]

Schwall, R. E.

A. E. Lita, D. Rosenberg, S. Nam, A. J. Miller, D. Balzar, L. M. Kaatz, and R. E. Schwall, "Tuning of tungsten thin film superconducting transition temperature for fabrication of photon number resolving detectors," IEEE Trans. Appl. Supercond. 15, 3528-3531 (2005).
[CrossRef]

D. Rosenberg, S. Nam, A. J. Miller, A. Salminen, E. Grossman, R. E. Schwall, and J. M. Martinis, "Near-unity absorption of near-infrared light in tungsten films," Nucl. Instrum. Methods Phys. Res. A 520, 537-540, (2004).
[CrossRef]

Sergienko, A. V.

A. J. Miller, S. Nam, J. M. Martinis and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett.,  83, 791-793 (2003).
[CrossRef]

Steinbach, A. H.

M. E. Huber, A. M. Corey, K. L. Lumpkins, F. N. Nafe, J. O. Rantschler, G. C. Hilton, J. M. Martinis, and A. H. Steinbach, "DC SQUID series arrays with intracoil damping to reduce resonance distortions," Appl. Supercond. 5, 425 (1998)
[CrossRef]

Uehira, I.

R. Ohba, I. Uehira and S. Kakuma, "Interferometric determination of a static optical path difference using a frequency swept laser diode," Meas. Sci. Technol. 1, 500-504 (1990).
[CrossRef]

Ullom, J. N.

J. N. Ullom, W. B. Doriese, G. C. Hilton, J. A. Beall, S. Deiker, W. D. Duncan, L. Ferreira, K. D. Irwin, C. D. Reintsema, and L. R. Vale, "Characterization and reduction of unexplained noise in superconducting transition-edge sensors, "Appl. Phys. Lett. 84, 4206-4208 (2004).
[CrossRef]

Vale, L. R.

J. N. Ullom, W. B. Doriese, G. C. Hilton, J. A. Beall, S. Deiker, W. D. Duncan, L. Ferreira, K. D. Irwin, C. D. Reintsema, and L. R. Vale, "Characterization and reduction of unexplained noise in superconducting transition-edge sensors, "Appl. Phys. Lett. 84, 4206-4208 (2004).
[CrossRef]

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84-87 (1970).
[CrossRef]

Appl. Phys. Lett. (4)

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735-737 (1998).
[CrossRef]

A. J. Miller, S. Nam, J. M. Martinis and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett.,  83, 791-793 (2003).
[CrossRef]

K. D. Irwin, "An application of electrothermal feedback for high resolution cryogenic particle detection," Appl. Phys. Lett. 66, 1998-2000 (1995).
[CrossRef]

J. N. Ullom, W. B. Doriese, G. C. Hilton, J. A. Beall, S. Deiker, W. D. Duncan, L. Ferreira, K. D. Irwin, C. D. Reintsema, and L. R. Vale, "Characterization and reduction of unexplained noise in superconducting transition-edge sensors, "Appl. Phys. Lett. 84, 4206-4208 (2004).
[CrossRef]

Appl. Supercond. (1)

M. E. Huber, A. M. Corey, K. L. Lumpkins, F. N. Nafe, J. O. Rantschler, G. C. Hilton, J. M. Martinis, and A. H. Steinbach, "DC SQUID series arrays with intracoil damping to reduce resonance distortions," Appl. Supercond. 5, 425 (1998)
[CrossRef]

IEEE Trans. Appl. Supercond. (1)

A. E. Lita, D. Rosenberg, S. Nam, A. J. Miller, D. Balzar, L. M. Kaatz, and R. E. Schwall, "Tuning of tungsten thin film superconducting transition temperature for fabrication of photon number resolving detectors," IEEE Trans. Appl. Supercond. 15, 3528-3531 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

R. Ohba, I. Uehira and S. Kakuma, "Interferometric determination of a static optical path difference using a frequency swept laser diode," Meas. Sci. Technol. 1, 500-504 (1990).
[CrossRef]

Nature (2)

D. Bouwmeester, "Quantum physics - high noon for photons," Nature 429, 139-141 (2004).
[CrossRef] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

New J. Phys. (1)

P. A. Hiskett D. Rosenberg, C. G. Peterson, R. J. Hughes, S. Nam, A. E. Lita, A. J. Miller and J. E. Nordholt, "Long distance quantum key distribution in optical fibre," New J. Phys. 8, 193 (2006).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

D. Rosenberg, S. Nam, A. J. Miller, A. Salminen, E. Grossman, R. E. Schwall, and J. M. Martinis, "Near-unity absorption of near-infrared light in tungsten films," Nucl. Instrum. Methods Phys. Res. A 520, 537-540, (2004).
[CrossRef]

Phys Rev. A (1)

D. Rosenberg, A. E. Lita, A. J. Miller and S. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys Rev. A 71, 061803 (2005).
[CrossRef]

Phys. Rev. A (1)

A. L. Migdal, D. Branning, and S. Castelletto, "Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source," Phys. Rev. A 66, 053805 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

A. K. Ekert, "Quantum cryptography based on Bell’s theorem, " Phys. Rev. Lett. 67, 661-663 (1991), C.H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without Bell’s theorem," Phys. Rev. Lett. 68, 557-559 (1992).
[CrossRef] [PubMed]

D. C. Burnham and D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84-87 (1970).
[CrossRef]

Other (1)

A. J. Miller, A. E. Lita, D. Rosenberg, S. Gruber, and S. Nam, "Superconducting photon number resolving detectors: performance and promise," Proceedings of the 8th International Conference on Quantum Communication, Measurement and Computing, J. O. Hirota, H. Shapiro and M. Sasaki, Eds., NICT Press, 445-450, (2007).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(Color online) Spectrophotometer data taken at room temperature indicating significant improvement in tungsten absorption at both 1310 and 1550 nm wavelengths when tungsten is embedded between appropriate dielectric layers.

Fig. 2.
Fig. 2.

(Color online) Interference patterns corresponding to different fiber-to-detector distances and also illustrating the small Δλ fringes in the case when light is incident on the device but also Si substrate, because of lateral misalignment.

Fig. 3.
Fig. 3.

Schematic of the optical and electrical measurement circuit.

Fig. 4.
Fig. 4.

Current (a) and power (b) as a function of voltage bias, respectively. Below 3 µV the sensor is self-biased, and the power is approximately constant as a function of voltage. Device base temperature is ~72 mK.

Fig. 5.
Fig. 5.

(Color online) Pulse-height distribution of a pulsed laser source measured with the TES embedded in the optical cavity. The source was 80 ns wide pulses of 1556 nm laser light at a repetition rate of 50 kHz, with a mean photon number per pulse of µ ~2.45. Shown are the data (circles) and the fit (line) Poissonian distribution convolved with the energy resolution of the TES.

Fig. 6.
Fig. 6.

(Color online) Detector response to 1556 nm (0.8 eV) photons. The pulses correspond to zero-, one-, two-, three-, and four-photon events, from the smallest height to the largest height traces. The measured (1/e) decay time is ~800 ns.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ E FWHM = 2.355 4 k B T c 2 C ( 1 α ) ( n 2 )

Metrics