Abstract

We detail the role of single nanometric apertures milled in a gold film to enhance the fluorescence emission of Alexa Fluor 647 molecules. Combining fluorescence correlation spectroscopy and lifetime measurements, we determine the respective contributions of excitation and emission in the observed enhanced fluorescence. We characterize a broad range of nanoaperture diameters from 80 to 310 nm, and highlight the link between the fluorescence enhancement and the local photonic density of states. These results are of great interest to increase the effectiveness of fluorescence-based single molecule detection and to understand the interaction between a quantum emitter and a nanometric metal structure.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998).
    [CrossRef]
  2. J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Anal. Biochem. 337, 171-194 (2005).
    [CrossRef] [PubMed]
  3. E. Fort and S. Gresillon, "Surface enhanced fluorescence," J. Phys. D: Appl. Phys. 41, 013001 (2008).
    [CrossRef]
  4. P. Anger, P. Bharadwaj and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
    [CrossRef] [PubMed]
  5. S. Kuhn, U. Hakanson, L. Rogobete and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef] [PubMed]
  6. J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, "Metal-Enhanced Single-Molecule Fluorescence on Silver Particle Monomer and Dimer: Coupling Effect between Metal Particles," Nano Lett. 7, 2101-2107 (2007).
    [CrossRef] [PubMed]
  7. S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007).
    [CrossRef]
  8. Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, "Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore’s structured emission," Appl. Phys. Lett. 90, 053107 (2007).
    [CrossRef]
  9. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
    [CrossRef] [PubMed]
  10. J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855-8865 (2005).
    [CrossRef] [PubMed]
  11. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, "Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter," Phys. Rev. Lett. 95, 017402 (2005).
    [CrossRef] [PubMed]
  12. O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gomez Rivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
    [CrossRef] [PubMed]
  13. J. S. Biteen, D. Pacifici, N. S. Lewis and H. A. Atwater, "Enhanced Radiative Emission Rate and Quantum Efficiency in Coupled Silicon Nanocrystal-Nanostructured Gold Emitters," Nano Lett. 5, 1768-1773 (2005).
    [CrossRef] [PubMed]
  14. G. L. Liu, J. Kim, and L. P. Lee, "Fluorescence enhancement of quantum dots enclosed in Au nanopockets with subwavelength aperture," Appl. Phys. Lett. 89, 241118 (2006).
    [CrossRef]
  15. Y.-J. Hung, I. I. Smolyaninov, C. C. Davis and H.-C. Wu, "Fluorescence enhancement by surface gratings," Opt. Express 14, 10825-10830 (2006).
    [CrossRef] [PubMed]
  16. G. Sun, J. B. Khurgin and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007).
    [CrossRef]
  17. Y. Liu and S. Blair, "Fluorescence enhancement from an array of subwavelength metal apertures," Opt. Lett. 28, 507-509 (2003).
    [CrossRef] [PubMed]
  18. A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C.-W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, "Surface Plasmon-Quantum Dot Coupling from Arrays of Nanoholes," J. Phys. Chem. B 110, 8307-8313 (2006).
    [CrossRef] [PubMed]
  19. J. H. Kim and P. J. Moyer, "Laser-induced fluorescence within subwavelength metallic arrays of nanoholes indicating minimal dependence on hole periodicity," Appl. Phys. Lett. 90, 131111 (2007).
    [CrossRef]
  20. U. C. Fischer, "Submicrometer aperture in a thin metal film as a probe of its microenvironment through enhanced light scattering and fluorescence," J. Opt. Soc. Am. B 3, 1239-1244 (1986).
    [CrossRef]
  21. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen and P.-F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005).
    [CrossRef] [PubMed]
  22. J. Wenger, B. Cluzel, J. Dintinger, N. Bonod, A.- L. Fehrembach, E. Popov, P.-F. Lenne, T. W. Ebbesen, and H. Rigneault, "Radiative and Nonradiative Photokinetics Alteration Inside a Single Metallic Nanometric Aperture," J. Phys. Chem. C 111, 11469-11474 (2007).
    [CrossRef]
  23. D. Gerard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, "Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals," Phys. Rev. B 77, 045413 (2008).
    [CrossRef]
  24. H. G. Craighead, "Future lab-on-a-chip technologies for interrogating individual molecules," Nature (London) 442, 387-393 (2006).
    [CrossRef] [PubMed]
  25. J. T. Mannion, and H. G. Craighead, "Nanofluidic Structures for Single Biomolecule Fluorescent Detection," Biopolymers 85, 131-143 (2006).
    [CrossRef] [PubMed]
  26. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature (London) 445, 39-46 (2007).
    [CrossRef] [PubMed]
  27. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299, 682-686 (2003).
    [CrossRef] [PubMed]
  28. K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, H. G. Craighead, "Lambda repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides," Biophys. J. 88, 2145-2153 (2005).
    [CrossRef]
  29. M. Leutenegger, M. Gosch, A. Perentes, P. Hoffmann, O. J. F. Martin, T. Lasser, "Confining the sampling volume for Fluorescence Correlation Spectroscopy using a sub-wavelength sized aperture," Opt. Express 14, 956-969 (2006).
    [CrossRef] [PubMed]
  30. J. Wenger, F. Conchonaud, J. Dintinger, L. Wawrezinieck, T. W. Ebbesen, H. Rigneault, D. Marguet, and P. F. Lenne, "Diffusion Analysis within Single Nanometric Apertures Reveals the Ultrafine Cell Membrane Organization," Biophys. J. 92, 913-919 (2007).
    [CrossRef]
  31. J. Wenger, D. G’erard, P.-F. Lenne, H. Rigneault, J. Dintinger, T. W. Ebbesen, A. Boned, F. Conchonaud, D. Marguet, "Dual-color fluorescence cross-correlation spectroscopy in a single nanoaperture : towards rapid multicomponent screening at high concentrations," Opt. Express 14, 12206-12216 (2006).
    [CrossRef] [PubMed]
  32. J. Widengren, R. Rigler, and U. Mets, "Triplet-state monitoring by fluorescence correlation spectroscopy," J. Fluoresc. 4, 255-258 (1994).
    [CrossRef]
  33. J. Widengren, U. Mets, and R. Rigler, "Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study," J. Phys. Chem. 99, 13368-13379 (1995).
    [CrossRef]
  34. V. Buschmann, K. D. Weston, and M. Sauer, "Spectroscopic Study and Evaluation of Red-Absorbing Fluorescent Dyes," Bioconjugate Chem. 14, 195-204 (2003).
    [CrossRef]
  35. J. Widengren and P. Schwille, "Characterization of Photoinduced Isomerization and Back-Isomerization of the Cyanine Dye Cy5 by Fluorescence Correlation Spectroscopy," J. Phys. Chem. A 104, 6416-6428 (2000).
    [CrossRef]
  36. C. Zander, J. Enderlein and R. A. Keller (Eds.), Single-Molecule Detection in Solution - Methods and Applications, (VCH-Wiley, Berlin/New York, 2002).
    [CrossRef]
  37. F. Mahdavi, Y. Liu, and S. Blair, "Modeling Fluorescence Enhancement from Metallic Nanocavities," Plasmonics 2, 129-142 (2007).
    [CrossRef]
  38. E. Popov, M. Neviere, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, "Field enhancement in single subwavelength apertures," J. Opt. Soc. Am. A 23, 2342-2348 (2006).
    [CrossRef]

2008 (2)

E. Fort and S. Gresillon, "Surface enhanced fluorescence," J. Phys. D: Appl. Phys. 41, 013001 (2008).
[CrossRef]

D. Gerard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, "Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals," Phys. Rev. B 77, 045413 (2008).
[CrossRef]

2007 (11)

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature (London) 445, 39-46 (2007).
[CrossRef] [PubMed]

F. Mahdavi, Y. Liu, and S. Blair, "Modeling Fluorescence Enhancement from Metallic Nanocavities," Plasmonics 2, 129-142 (2007).
[CrossRef]

J. Wenger, F. Conchonaud, J. Dintinger, L. Wawrezinieck, T. W. Ebbesen, H. Rigneault, D. Marguet, and P. F. Lenne, "Diffusion Analysis within Single Nanometric Apertures Reveals the Ultrafine Cell Membrane Organization," Biophys. J. 92, 913-919 (2007).
[CrossRef]

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, "Metal-Enhanced Single-Molecule Fluorescence on Silver Particle Monomer and Dimer: Coupling Effect between Metal Particles," Nano Lett. 7, 2101-2107 (2007).
[CrossRef] [PubMed]

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007).
[CrossRef]

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, "Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore’s structured emission," Appl. Phys. Lett. 90, 053107 (2007).
[CrossRef]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
[CrossRef] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gomez Rivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

G. Sun, J. B. Khurgin and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

J. H. Kim and P. J. Moyer, "Laser-induced fluorescence within subwavelength metallic arrays of nanoholes indicating minimal dependence on hole periodicity," Appl. Phys. Lett. 90, 131111 (2007).
[CrossRef]

J. Wenger, B. Cluzel, J. Dintinger, N. Bonod, A.- L. Fehrembach, E. Popov, P.-F. Lenne, T. W. Ebbesen, and H. Rigneault, "Radiative and Nonradiative Photokinetics Alteration Inside a Single Metallic Nanometric Aperture," J. Phys. Chem. C 111, 11469-11474 (2007).
[CrossRef]

2006 (10)

G. L. Liu, J. Kim, and L. P. Lee, "Fluorescence enhancement of quantum dots enclosed in Au nanopockets with subwavelength aperture," Appl. Phys. Lett. 89, 241118 (2006).
[CrossRef]

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C.-W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, "Surface Plasmon-Quantum Dot Coupling from Arrays of Nanoholes," J. Phys. Chem. B 110, 8307-8313 (2006).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

S. Kuhn, U. Hakanson, L. Rogobete and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

M. Leutenegger, M. Gosch, A. Perentes, P. Hoffmann, O. J. F. Martin, T. Lasser, "Confining the sampling volume for Fluorescence Correlation Spectroscopy using a sub-wavelength sized aperture," Opt. Express 14, 956-969 (2006).
[CrossRef] [PubMed]

E. Popov, M. Neviere, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, "Field enhancement in single subwavelength apertures," J. Opt. Soc. Am. A 23, 2342-2348 (2006).
[CrossRef]

Y.-J. Hung, I. I. Smolyaninov, C. C. Davis and H.-C. Wu, "Fluorescence enhancement by surface gratings," Opt. Express 14, 10825-10830 (2006).
[CrossRef] [PubMed]

J. Wenger, D. G’erard, P.-F. Lenne, H. Rigneault, J. Dintinger, T. W. Ebbesen, A. Boned, F. Conchonaud, D. Marguet, "Dual-color fluorescence cross-correlation spectroscopy in a single nanoaperture : towards rapid multicomponent screening at high concentrations," Opt. Express 14, 12206-12216 (2006).
[CrossRef] [PubMed]

H. G. Craighead, "Future lab-on-a-chip technologies for interrogating individual molecules," Nature (London) 442, 387-393 (2006).
[CrossRef] [PubMed]

J. T. Mannion, and H. G. Craighead, "Nanofluidic Structures for Single Biomolecule Fluorescent Detection," Biopolymers 85, 131-143 (2006).
[CrossRef] [PubMed]

2005 (6)

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, H. G. Craighead, "Lambda repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides," Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Anal. Biochem. 337, 171-194 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, "Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

J. S. Biteen, D. Pacifici, N. S. Lewis and H. A. Atwater, "Enhanced Radiative Emission Rate and Quantum Efficiency in Coupled Silicon Nanocrystal-Nanostructured Gold Emitters," Nano Lett. 5, 1768-1773 (2005).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen and P.-F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855-8865 (2005).
[CrossRef] [PubMed]

2003 (3)

V. Buschmann, K. D. Weston, and M. Sauer, "Spectroscopic Study and Evaluation of Red-Absorbing Fluorescent Dyes," Bioconjugate Chem. 14, 195-204 (2003).
[CrossRef]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Y. Liu and S. Blair, "Fluorescence enhancement from an array of subwavelength metal apertures," Opt. Lett. 28, 507-509 (2003).
[CrossRef] [PubMed]

2000 (1)

J. Widengren and P. Schwille, "Characterization of Photoinduced Isomerization and Back-Isomerization of the Cyanine Dye Cy5 by Fluorescence Correlation Spectroscopy," J. Phys. Chem. A 104, 6416-6428 (2000).
[CrossRef]

1998 (1)

W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998).
[CrossRef]

1995 (1)

J. Widengren, U. Mets, and R. Rigler, "Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study," J. Phys. Chem. 99, 13368-13379 (1995).
[CrossRef]

1994 (1)

J. Widengren, R. Rigler, and U. Mets, "Triplet-state monitoring by fluorescence correlation spectroscopy," J. Fluoresc. 4, 255-258 (1994).
[CrossRef]

1986 (1)

Anger, P.

P. Anger, P. Bharadwaj and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Aslan, K.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, "Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore’s structured emission," Appl. Phys. Lett. 90, 053107 (2007).
[CrossRef]

Atwater, H. A.

J. S. Biteen, D. Pacifici, N. S. Lewis and H. A. Atwater, "Enhanced Radiative Emission Rate and Quantum Efficiency in Coupled Silicon Nanocrystal-Nanostructured Gold Emitters," Nano Lett. 5, 1768-1773 (2005).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998).
[CrossRef]

Bharadwaj, P.

P. Anger, P. Bharadwaj and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Biteen, J. S.

J. S. Biteen, D. Pacifici, N. S. Lewis and H. A. Atwater, "Enhanced Radiative Emission Rate and Quantum Efficiency in Coupled Silicon Nanocrystal-Nanostructured Gold Emitters," Nano Lett. 5, 1768-1773 (2005).
[CrossRef] [PubMed]

Blair, S.

F. Mahdavi, Y. Liu, and S. Blair, "Modeling Fluorescence Enhancement from Metallic Nanocavities," Plasmonics 2, 129-142 (2007).
[CrossRef]

Y. Liu and S. Blair, "Fluorescence enhancement from an array of subwavelength metal apertures," Opt. Lett. 28, 507-509 (2003).
[CrossRef] [PubMed]

Bonod, N.

J. Wenger, B. Cluzel, J. Dintinger, N. Bonod, A.- L. Fehrembach, E. Popov, P.-F. Lenne, T. W. Ebbesen, and H. Rigneault, "Radiative and Nonradiative Photokinetics Alteration Inside a Single Metallic Nanometric Aperture," J. Phys. Chem. C 111, 11469-11474 (2007).
[CrossRef]

E. Popov, M. Neviere, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, "Field enhancement in single subwavelength apertures," J. Opt. Soc. Am. A 23, 2342-2348 (2006).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen and P.-F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Brolo, A. G.

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C.-W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, "Surface Plasmon-Quantum Dot Coupling from Arrays of Nanoholes," J. Phys. Chem. B 110, 8307-8313 (2006).
[CrossRef] [PubMed]

Buschmann, V.

V. Buschmann, K. D. Weston, and M. Sauer, "Spectroscopic Study and Evaluation of Red-Absorbing Fluorescent Dyes," Bioconjugate Chem. 14, 195-204 (2003).
[CrossRef]

Capoulade, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen and P.-F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Chaumet, P.

Chowdhury, M. H.

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, "Metal-Enhanced Single-Molecule Fluorescence on Silver Particle Monomer and Dimer: Coupling Effect between Metal Particles," Nano Lett. 7, 2101-2107 (2007).
[CrossRef] [PubMed]

Cluzel, B.

J. Wenger, B. Cluzel, J. Dintinger, N. Bonod, A.- L. Fehrembach, E. Popov, P.-F. Lenne, T. W. Ebbesen, and H. Rigneault, "Radiative and Nonradiative Photokinetics Alteration Inside a Single Metallic Nanometric Aperture," J. Phys. Chem. C 111, 11469-11474 (2007).
[CrossRef]

Conchonaud, F.

J. Wenger, F. Conchonaud, J. Dintinger, L. Wawrezinieck, T. W. Ebbesen, H. Rigneault, D. Marguet, and P. F. Lenne, "Diffusion Analysis within Single Nanometric Apertures Reveals the Ultrafine Cell Membrane Organization," Biophys. J. 92, 913-919 (2007).
[CrossRef]

Cooper, M. D.

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C.-W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, "Surface Plasmon-Quantum Dot Coupling from Arrays of Nanoholes," J. Phys. Chem. B 110, 8307-8313 (2006).
[CrossRef] [PubMed]

Cox, E. C.

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, H. G. Craighead, "Lambda repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides," Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

Craighead, H. G.

H. G. Craighead, "Future lab-on-a-chip technologies for interrogating individual molecules," Nature (London) 442, 387-393 (2006).
[CrossRef] [PubMed]

J. T. Mannion, and H. G. Craighead, "Nanofluidic Structures for Single Biomolecule Fluorescent Detection," Biopolymers 85, 131-143 (2006).
[CrossRef] [PubMed]

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, H. G. Craighead, "Lambda repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides," Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Davis, C. C.

Dintinger, J.

J. Wenger, F. Conchonaud, J. Dintinger, L. Wawrezinieck, T. W. Ebbesen, H. Rigneault, D. Marguet, and P. F. Lenne, "Diffusion Analysis within Single Nanometric Apertures Reveals the Ultrafine Cell Membrane Organization," Biophys. J. 92, 913-919 (2007).
[CrossRef]

J. Wenger, B. Cluzel, J. Dintinger, N. Bonod, A.- L. Fehrembach, E. Popov, P.-F. Lenne, T. W. Ebbesen, and H. Rigneault, "Radiative and Nonradiative Photokinetics Alteration Inside a Single Metallic Nanometric Aperture," J. Phys. Chem. C 111, 11469-11474 (2007).
[CrossRef]

E. Popov, M. Neviere, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, "Field enhancement in single subwavelength apertures," J. Opt. Soc. Am. A 23, 2342-2348 (2006).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen and P.-F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature (London) 445, 39-46 (2007).
[CrossRef] [PubMed]

J. Wenger, B. Cluzel, J. Dintinger, N. Bonod, A.- L. Fehrembach, E. Popov, P.-F. Lenne, T. W. Ebbesen, and H. Rigneault, "Radiative and Nonradiative Photokinetics Alteration Inside a Single Metallic Nanometric Aperture," J. Phys. Chem. C 111, 11469-11474 (2007).
[CrossRef]

J. Wenger, F. Conchonaud, J. Dintinger, L. Wawrezinieck, T. W. Ebbesen, H. Rigneault, D. Marguet, and P. F. Lenne, "Diffusion Analysis within Single Nanometric Apertures Reveals the Ultrafine Cell Membrane Organization," Biophys. J. 92, 913-919 (2007).
[CrossRef]

E. Popov, M. Neviere, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, "Field enhancement in single subwavelength apertures," J. Opt. Soc. Am. A 23, 2342-2348 (2006).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen and P.-F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Eisler, H.-J.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, "Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Enderlein, J.

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, "Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Fehrembach, A.- L.

J. Wenger, B. Cluzel, J. Dintinger, N. Bonod, A.- L. Fehrembach, E. Popov, P.-F. Lenne, T. W. Ebbesen, and H. Rigneault, "Radiative and Nonradiative Photokinetics Alteration Inside a Single Metallic Nanometric Aperture," J. Phys. Chem. C 111, 11469-11474 (2007).
[CrossRef]

Fischer, U. C.

Foquet, M.

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, H. G. Craighead, "Lambda repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides," Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Fort, E.

E. Fort and S. Gresillon, "Surface enhanced fluorescence," J. Phys. D: Appl. Phys. 41, 013001 (2008).
[CrossRef]

Fu, Y.

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, "Metal-Enhanced Single-Molecule Fluorescence on Silver Particle Monomer and Dimer: Coupling Effect between Metal Particles," Nano Lett. 7, 2101-2107 (2007).
[CrossRef] [PubMed]

Geddes, C. D.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, "Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore’s structured emission," Appl. Phys. Lett. 90, 053107 (2007).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature (London) 445, 39-46 (2007).
[CrossRef] [PubMed]

Gerber, S.

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007).
[CrossRef]

Giannini, V.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gomez Rivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Gomez Rivas, J.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gomez Rivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
[CrossRef] [PubMed]

Gordon, R.

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C.-W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, "Surface Plasmon-Quantum Dot Coupling from Arrays of Nanoholes," J. Phys. Chem. B 110, 8307-8313 (2006).
[CrossRef] [PubMed]

Gosch, M.

Gresillon, S.

E. Fort and S. Gresillon, "Surface enhanced fluorescence," J. Phys. D: Appl. Phys. 41, 013001 (2008).
[CrossRef]

Guo, L.

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, H. G. Craighead, "Lambda repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides," Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

Halas, N. J.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
[CrossRef] [PubMed]

Hecht, B.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, "Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Hoffmann, P.

Hohenester, U.

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007).
[CrossRef]

Hung, Y.-J.

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
[CrossRef] [PubMed]

Kavanagh, K. L.

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C.-W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, "Surface Plasmon-Quantum Dot Coupling from Arrays of Nanoholes," J. Phys. Chem. B 110, 8307-8313 (2006).
[CrossRef] [PubMed]

Khurgin, J. B.

G. Sun, J. B. Khurgin and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

Kim, J.

G. L. Liu, J. Kim, and L. P. Lee, "Fluorescence enhancement of quantum dots enclosed in Au nanopockets with subwavelength aperture," Appl. Phys. Lett. 89, 241118 (2006).
[CrossRef]

Kim, J. H.

J. H. Kim and P. J. Moyer, "Laser-induced fluorescence within subwavelength metallic arrays of nanoholes indicating minimal dependence on hole periodicity," Appl. Phys. Lett. 90, 131111 (2007).
[CrossRef]

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Krenn, J. R.

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007).
[CrossRef]

Kuhn, S.

S. Kuhn, U. Hakanson, L. Rogobete and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Kwok, S. C.

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C.-W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, "Surface Plasmon-Quantum Dot Coupling from Arrays of Nanoholes," J. Phys. Chem. B 110, 8307-8313 (2006).
[CrossRef] [PubMed]

Lakowicz, J. R.

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, "Metal-Enhanced Single-Molecule Fluorescence on Silver Particle Monomer and Dimer: Coupling Effect between Metal Particles," Nano Lett. 7, 2101-2107 (2007).
[CrossRef] [PubMed]

J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Anal. Biochem. 337, 171-194 (2005).
[CrossRef] [PubMed]

Lasser, T.

Lee, L. P.

G. L. Liu, J. Kim, and L. P. Lee, "Fluorescence enhancement of quantum dots enclosed in Au nanopockets with subwavelength aperture," Appl. Phys. Lett. 89, 241118 (2006).
[CrossRef]

Leitner, A.

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007).
[CrossRef]

Lenne, P. F.

J. Wenger, F. Conchonaud, J. Dintinger, L. Wawrezinieck, T. W. Ebbesen, H. Rigneault, D. Marguet, and P. F. Lenne, "Diffusion Analysis within Single Nanometric Apertures Reveals the Ultrafine Cell Membrane Organization," Biophys. J. 92, 913-919 (2007).
[CrossRef]

Lenne, P.-F.

J. Wenger, B. Cluzel, J. Dintinger, N. Bonod, A.- L. Fehrembach, E. Popov, P.-F. Lenne, T. W. Ebbesen, and H. Rigneault, "Radiative and Nonradiative Photokinetics Alteration Inside a Single Metallic Nanometric Aperture," J. Phys. Chem. C 111, 11469-11474 (2007).
[CrossRef]

E. Popov, M. Neviere, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, "Field enhancement in single subwavelength apertures," J. Opt. Soc. Am. A 23, 2342-2348 (2006).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen and P.-F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Leutenegger, M.

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Lewis, N. S.

J. S. Biteen, D. Pacifici, N. S. Lewis and H. A. Atwater, "Enhanced Radiative Emission Rate and Quantum Efficiency in Coupled Silicon Nanocrystal-Nanostructured Gold Emitters," Nano Lett. 5, 1768-1773 (2005).
[CrossRef] [PubMed]

Liu, G. L.

G. L. Liu, J. Kim, and L. P. Lee, "Fluorescence enhancement of quantum dots enclosed in Au nanopockets with subwavelength aperture," Appl. Phys. Lett. 89, 241118 (2006).
[CrossRef]

Liu, Y.

F. Mahdavi, Y. Liu, and S. Blair, "Modeling Fluorescence Enhancement from Metallic Nanocavities," Plasmonics 2, 129-142 (2007).
[CrossRef]

Y. Liu and S. Blair, "Fluorescence enhancement from an array of subwavelength metal apertures," Opt. Lett. 28, 507-509 (2003).
[CrossRef] [PubMed]

Mahdavi, F.

F. Mahdavi, Y. Liu, and S. Blair, "Modeling Fluorescence Enhancement from Metallic Nanocavities," Plasmonics 2, 129-142 (2007).
[CrossRef]

Mannion, J. T.

J. T. Mannion, and H. G. Craighead, "Nanofluidic Structures for Single Biomolecule Fluorescent Detection," Biopolymers 85, 131-143 (2006).
[CrossRef] [PubMed]

Marguet, D.

J. Wenger, F. Conchonaud, J. Dintinger, L. Wawrezinieck, T. W. Ebbesen, H. Rigneault, D. Marguet, and P. F. Lenne, "Diffusion Analysis within Single Nanometric Apertures Reveals the Ultrafine Cell Membrane Organization," Biophys. J. 92, 913-919 (2007).
[CrossRef]

Martin, O. J. F.

Mets, U.

J. Widengren, U. Mets, and R. Rigler, "Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study," J. Phys. Chem. 99, 13368-13379 (1995).
[CrossRef]

J. Widengren, R. Rigler, and U. Mets, "Triplet-state monitoring by fluorescence correlation spectroscopy," J. Fluoresc. 4, 255-258 (1994).
[CrossRef]

Moffitt, M. G.

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C.-W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, "Surface Plasmon-Quantum Dot Coupling from Arrays of Nanoholes," J. Phys. Chem. B 110, 8307-8313 (2006).
[CrossRef] [PubMed]

Moyer, P. J.

J. H. Kim and P. J. Moyer, "Laser-induced fluorescence within subwavelength metallic arrays of nanoholes indicating minimal dependence on hole periodicity," Appl. Phys. Lett. 90, 131111 (2007).
[CrossRef]

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gomez Rivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Neviere, M.

Novotny, L.

P. Anger, P. Bharadwaj and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Pacifici, D.

J. S. Biteen, D. Pacifici, N. S. Lewis and H. A. Atwater, "Enhanced Radiative Emission Rate and Quantum Efficiency in Coupled Silicon Nanocrystal-Nanostructured Gold Emitters," Nano Lett. 5, 1768-1773 (2005).
[CrossRef] [PubMed]

Perentes, A.

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, "Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Popov, E.

J. Wenger, B. Cluzel, J. Dintinger, N. Bonod, A.- L. Fehrembach, E. Popov, P.-F. Lenne, T. W. Ebbesen, and H. Rigneault, "Radiative and Nonradiative Photokinetics Alteration Inside a Single Metallic Nanometric Aperture," J. Phys. Chem. C 111, 11469-11474 (2007).
[CrossRef]

E. Popov, M. Neviere, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, "Field enhancement in single subwavelength apertures," J. Opt. Soc. Am. A 23, 2342-2348 (2006).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen and P.-F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Previte, M. J. R.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, "Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore’s structured emission," Appl. Phys. Lett. 90, 053107 (2007).
[CrossRef]

Reil, F.

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007).
[CrossRef]

Rigler, R.

J. Widengren, U. Mets, and R. Rigler, "Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study," J. Phys. Chem. 99, 13368-13379 (1995).
[CrossRef]

J. Widengren, R. Rigler, and U. Mets, "Triplet-state monitoring by fluorescence correlation spectroscopy," J. Fluoresc. 4, 255-258 (1994).
[CrossRef]

Rigneault, H.

J. Wenger, F. Conchonaud, J. Dintinger, L. Wawrezinieck, T. W. Ebbesen, H. Rigneault, D. Marguet, and P. F. Lenne, "Diffusion Analysis within Single Nanometric Apertures Reveals the Ultrafine Cell Membrane Organization," Biophys. J. 92, 913-919 (2007).
[CrossRef]

J. Wenger, B. Cluzel, J. Dintinger, N. Bonod, A.- L. Fehrembach, E. Popov, P.-F. Lenne, T. W. Ebbesen, and H. Rigneault, "Radiative and Nonradiative Photokinetics Alteration Inside a Single Metallic Nanometric Aperture," J. Phys. Chem. C 111, 11469-11474 (2007).
[CrossRef]

E. Popov, M. Neviere, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, "Field enhancement in single subwavelength apertures," J. Opt. Soc. Am. A 23, 2342-2348 (2006).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen and P.-F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Riordon, J.

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C.-W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, "Surface Plasmon-Quantum Dot Coupling from Arrays of Nanoholes," J. Phys. Chem. B 110, 8307-8313 (2006).
[CrossRef] [PubMed]

Ruckstuhl, T.

Samiee, K. T.

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, H. G. Craighead, "Lambda repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides," Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

Sanchez-Gil, J. A.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gomez Rivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Sauer, M.

V. Buschmann, K. D. Weston, and M. Sauer, "Spectroscopic Study and Evaluation of Red-Absorbing Fluorescent Dyes," Bioconjugate Chem. 14, 195-204 (2003).
[CrossRef]

Schlagenhaufen, T.

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007).
[CrossRef]

Schwille, P.

J. Widengren and P. Schwille, "Characterization of Photoinduced Isomerization and Back-Isomerization of the Cyanine Dye Cy5 by Fluorescence Correlation Spectroscopy," J. Phys. Chem. A 104, 6416-6428 (2000).
[CrossRef]

Smolyaninov, I. I.

Soref, R. A.

G. Sun, J. B. Khurgin and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

Sun, G.

G. Sun, J. B. Khurgin and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
[CrossRef] [PubMed]

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Wang, C.-W.

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C.-W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, "Surface Plasmon-Quantum Dot Coupling from Arrays of Nanoholes," J. Phys. Chem. B 110, 8307-8313 (2006).
[CrossRef] [PubMed]

Wawrezinieck, L.

J. Wenger, F. Conchonaud, J. Dintinger, L. Wawrezinieck, T. W. Ebbesen, H. Rigneault, D. Marguet, and P. F. Lenne, "Diffusion Analysis within Single Nanometric Apertures Reveals the Ultrafine Cell Membrane Organization," Biophys. J. 92, 913-919 (2007).
[CrossRef]

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Wenger, J.

J. Wenger, B. Cluzel, J. Dintinger, N. Bonod, A.- L. Fehrembach, E. Popov, P.-F. Lenne, T. W. Ebbesen, and H. Rigneault, "Radiative and Nonradiative Photokinetics Alteration Inside a Single Metallic Nanometric Aperture," J. Phys. Chem. C 111, 11469-11474 (2007).
[CrossRef]

J. Wenger, F. Conchonaud, J. Dintinger, L. Wawrezinieck, T. W. Ebbesen, H. Rigneault, D. Marguet, and P. F. Lenne, "Diffusion Analysis within Single Nanometric Apertures Reveals the Ultrafine Cell Membrane Organization," Biophys. J. 92, 913-919 (2007).
[CrossRef]

E. Popov, M. Neviere, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, "Field enhancement in single subwavelength apertures," J. Opt. Soc. Am. A 23, 2342-2348 (2006).
[CrossRef]

J. Wenger, D. G’erard, P.-F. Lenne, H. Rigneault, J. Dintinger, T. W. Ebbesen, A. Boned, F. Conchonaud, D. Marguet, "Dual-color fluorescence cross-correlation spectroscopy in a single nanoaperture : towards rapid multicomponent screening at high concentrations," Opt. Express 14, 12206-12216 (2006).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen and P.-F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Weston, K. D.

V. Buschmann, K. D. Weston, and M. Sauer, "Spectroscopic Study and Evaluation of Red-Absorbing Fluorescent Dyes," Bioconjugate Chem. 14, 195-204 (2003).
[CrossRef]

Widengren, J.

J. Widengren and P. Schwille, "Characterization of Photoinduced Isomerization and Back-Isomerization of the Cyanine Dye Cy5 by Fluorescence Correlation Spectroscopy," J. Phys. Chem. A 104, 6416-6428 (2000).
[CrossRef]

J. Widengren, U. Mets, and R. Rigler, "Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study," J. Phys. Chem. 99, 13368-13379 (1995).
[CrossRef]

J. Widengren, R. Rigler, and U. Mets, "Triplet-state monitoring by fluorescence correlation spectroscopy," J. Fluoresc. 4, 255-258 (1994).
[CrossRef]

Wu, H.-C.

Zhang, J.

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, "Metal-Enhanced Single-Molecule Fluorescence on Silver Particle Monomer and Dimer: Coupling Effect between Metal Particles," Nano Lett. 7, 2101-2107 (2007).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, "Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore’s structured emission," Appl. Phys. Lett. 90, 053107 (2007).
[CrossRef]

Anal. Biochem. (1)

J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Anal. Biochem. 337, 171-194 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, "Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore’s structured emission," Appl. Phys. Lett. 90, 053107 (2007).
[CrossRef]

G. L. Liu, J. Kim, and L. P. Lee, "Fluorescence enhancement of quantum dots enclosed in Au nanopockets with subwavelength aperture," Appl. Phys. Lett. 89, 241118 (2006).
[CrossRef]

G. Sun, J. B. Khurgin and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

J. H. Kim and P. J. Moyer, "Laser-induced fluorescence within subwavelength metallic arrays of nanoholes indicating minimal dependence on hole periodicity," Appl. Phys. Lett. 90, 131111 (2007).
[CrossRef]

Bioconjugate Chem. (1)

V. Buschmann, K. D. Weston, and M. Sauer, "Spectroscopic Study and Evaluation of Red-Absorbing Fluorescent Dyes," Bioconjugate Chem. 14, 195-204 (2003).
[CrossRef]

Biophys. J. (2)

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, H. G. Craighead, "Lambda repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides," Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

J. Wenger, F. Conchonaud, J. Dintinger, L. Wawrezinieck, T. W. Ebbesen, H. Rigneault, D. Marguet, and P. F. Lenne, "Diffusion Analysis within Single Nanometric Apertures Reveals the Ultrafine Cell Membrane Organization," Biophys. J. 92, 913-919 (2007).
[CrossRef]

Biopolymers (1)

J. T. Mannion, and H. G. Craighead, "Nanofluidic Structures for Single Biomolecule Fluorescent Detection," Biopolymers 85, 131-143 (2006).
[CrossRef] [PubMed]

J. Fluoresc. (1)

J. Widengren, R. Rigler, and U. Mets, "Triplet-state monitoring by fluorescence correlation spectroscopy," J. Fluoresc. 4, 255-258 (1994).
[CrossRef]

J. Mod. Opt. (1)

W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

J. Widengren, U. Mets, and R. Rigler, "Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study," J. Phys. Chem. 99, 13368-13379 (1995).
[CrossRef]

J. Phys. Chem. A (1)

J. Widengren and P. Schwille, "Characterization of Photoinduced Isomerization and Back-Isomerization of the Cyanine Dye Cy5 by Fluorescence Correlation Spectroscopy," J. Phys. Chem. A 104, 6416-6428 (2000).
[CrossRef]

J. Phys. Chem. B (1)

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C.-W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, "Surface Plasmon-Quantum Dot Coupling from Arrays of Nanoholes," J. Phys. Chem. B 110, 8307-8313 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

J. Wenger, B. Cluzel, J. Dintinger, N. Bonod, A.- L. Fehrembach, E. Popov, P.-F. Lenne, T. W. Ebbesen, and H. Rigneault, "Radiative and Nonradiative Photokinetics Alteration Inside a Single Metallic Nanometric Aperture," J. Phys. Chem. C 111, 11469-11474 (2007).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

E. Fort and S. Gresillon, "Surface enhanced fluorescence," J. Phys. D: Appl. Phys. 41, 013001 (2008).
[CrossRef]

Nano Lett. (4)

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
[CrossRef] [PubMed]

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, "Metal-Enhanced Single-Molecule Fluorescence on Silver Particle Monomer and Dimer: Coupling Effect between Metal Particles," Nano Lett. 7, 2101-2107 (2007).
[CrossRef] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gomez Rivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

J. S. Biteen, D. Pacifici, N. S. Lewis and H. A. Atwater, "Enhanced Radiative Emission Rate and Quantum Efficiency in Coupled Silicon Nanocrystal-Nanostructured Gold Emitters," Nano Lett. 5, 1768-1773 (2005).
[CrossRef] [PubMed]

Nature (London) (2)

H. G. Craighead, "Future lab-on-a-chip technologies for interrogating individual molecules," Nature (London) 442, 387-393 (2006).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature (London) 445, 39-46 (2007).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (2)

D. Gerard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, "Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals," Phys. Rev. B 77, 045413 (2008).
[CrossRef]

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007).
[CrossRef]

Phys. Rev. Lett. (4)

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, "Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

S. Kuhn, U. Hakanson, L. Rogobete and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen and P.-F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Plasmonics (1)

F. Mahdavi, Y. Liu, and S. Blair, "Modeling Fluorescence Enhancement from Metallic Nanocavities," Plasmonics 2, 129-142 (2007).
[CrossRef]

Science (1)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Other (1)

C. Zander, J. Enderlein and R. A. Keller (Eds.), Single-Molecule Detection in Solution - Methods and Applications, (VCH-Wiley, Berlin/New York, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic view of the experimental setup combining FCS and TCSPC. (b) Nanoaperture configuration. (c) Notations used to describe the molecular transition rates.

Fig. 2.
Fig. 2.

(a) Typical fluorescence autocorrelations in a 120 nm aperture (crosses, raw data) and numerical fits according to Eq. (7) (lines). (b) Snapshot of the raw fluorescence signal corresponding to (a).

Fig. 3.
Fig. 3.

Fluorescence rates per molecule CRM versus excitation power in open solution and in single nanoapertures. Circles are experimental data, lines are numerical fits using Eq. (2).

Fig. 4.
Fig. 4.

(a) Fluorescence enhancement ηF derived from Fig. 3. (b) Fluorescence enhancement below saturation ηF,low (empty markers) and at saturation ηF,sat (filled markers) deduced from the numerical fits in Fig. 3 according to Eqs. (2), (4) and (6).

Fig. 5.
Fig. 5.

(a) Normalized fluorescence decay traces measured in open solution (black dots) and in single nanoapertures. Dots are experimental data, lines are numerical fits following the procedure described in Sec. 3.3. The shorter decay trace (grey) is the overall instrument response function (IRF). (b) Fluorescence lifetime reduction versus the aperture diameter (as compared to open solution), deduced from the numerical fits in (a) using Eq. (8).

Fig. 6.
Fig. 6.

Physical contributions to nanoaperture enhanced fluorescence, plotted versus the aperture diameter and normalized to the open solution case. (a) Fluorescence enhancement below saturation ηF,low , (b) Emission rate enhancement ηkem , (c) Lifetime reduction ηktot , (d) Excitation enhancement ηIe , (e) Ratio ηkem ktot , (f) Propagation constant γ of the fundamental mode inside the aperture (solid line: real part, dashed line: imaginary part).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

CRM = κ ϕ σ I e 1 + I e I s
CRM = k em k tot σ I e 1 + I e I s
CRM low = k em k tot σ I e ( I e I s )
η F , low = CRM aper CRM sol = η k em η k tot η I e ( I e I s )
CRM sat = k em k tot σ I s = k em 1 + k isc k d ( I e I s )
η F , sat = η k em ( I e I s )
g ( 2 ) ( τ ) = 1 + 1 N ( 1 B F ) 2 [ 1 + n T exp ( τ τ b T ) ] 1 ( 1 + τ τ d ) 1 + s 2 τ τ d
O ( t ) ( A 1 + A 2 ) exp ( k tot t ) A 1 exp ( k 1 t ) A 2 exp ( k 2 t )

Metrics