Abstract

This investigation demonstrates the feasibility of a magnetically tunable liquid crystal phase grating for the terahertz wave. The phase grating can be used as a beam splitter. The ratio of the zeroth and first-order diffracted THz-beams (0.3 THz) polarized in a direction perpendicular to that of the grooves of the grating can be tuned from 4:1 to 1:2. When the THz wave is polarized in any other direction, this device can be operated as a polarizing beam splitter.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X.-C. Zhang, "Materials for terahertz science and technology," Nat. Maters. 1, 26-33 (2002).
    [CrossRef]
  2. D. Mittleman, Terahertz Imaging, Sensing with THz radiation (Spring-Verlag, New York 2002).
  3. P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002).
    [CrossRef]
  4. A. Filin, M. Stowe, and R. Kersting, "Time-domain differentiation of terahertz pulses," Opt. Lett. 26, 2008-2010 (2001).
    [CrossRef]
  5. F. Garet, J. -L. Coutaz, M. Narzarov, E. Bonnet, O. Parriaux, and G. Racine, "THz time-domain spectroscopy study of grating couplers and segmented grating filters," Digest of Joint 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electron. 181-182 (2004).
  6. R. Kersting, G. Strasser, and K. Unterrainer, "Terahertz phase modulator," Electron. Lett. 36, 1156-1158 (2000).
    [CrossRef]
  7. J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, "An electro-optically controlled liquid crystal diffraction grating," Appl. Phys. Lett. 67, 2588-2590 (1995).
    [CrossRef]
  8. Jae-Hong Park, Chang-Jae Yu, Jinyool Kim, Sung-Yeop Chung, and Sin-Doo Lee, "Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings," Appl. Phys. Lett. 83, 1918-1920 (2003).
    [CrossRef]
  9. Fuzi Yang and J. R. Sambles, "Microwave liquid-crystal variable phase grating," Appl. Phys. Lett. 85, 2041-2043 (2004).
    [CrossRef]
  10. F. Vita, A. Marino, V. Tkachenko, G. Abbate, D. E. Lucchetta, and F. Simoni, "Visible and near-infrared characterization and modeling of nanosized holographic-polymer-dispersed liquid crystal gratings," Phys. Rev. E 72, 011702 (2005).
    [CrossRef]
  11. H.-Y, Wu, C.-F. Hsieh, T.-T. Tang, R.-P. Pan, and C.-L. Pan, "Electrically tunable room-temperature 2? liquid crystal terahertz phase shifter," IEEE Photon. Technol. Lett. 18, 1488-1490 (2006).
    [CrossRef]
  12. C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, C.-L. Pan, and R.-P. Pan, "Liquid-crystal-based terahertz tunable Lyot filter," Appl. Phys. Lett. 88, 101107 (2006).
    [CrossRef]
  13. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  14. C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, "Magnetically tunable room-temperature 2? liquid crystal terahertz phase shifter," Opt. Express 12, 2625-2630 (2004).
    [CrossRef] [PubMed]
  15. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed., (Oxford, New York, 1993).
  16. C.-L. Pan, C.-F. Hsieh, R.-P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, "Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal," Opt. Express 13, 3921-3930 (2005).
    [CrossRef] [PubMed]

2006

H.-Y, Wu, C.-F. Hsieh, T.-T. Tang, R.-P. Pan, and C.-L. Pan, "Electrically tunable room-temperature 2? liquid crystal terahertz phase shifter," IEEE Photon. Technol. Lett. 18, 1488-1490 (2006).
[CrossRef]

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, C.-L. Pan, and R.-P. Pan, "Liquid-crystal-based terahertz tunable Lyot filter," Appl. Phys. Lett. 88, 101107 (2006).
[CrossRef]

2005

2004

2003

Jae-Hong Park, Chang-Jae Yu, Jinyool Kim, Sung-Yeop Chung, and Sin-Doo Lee, "Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings," Appl. Phys. Lett. 83, 1918-1920 (2003).
[CrossRef]

2002

B. Ferguson and X.-C. Zhang, "Materials for terahertz science and technology," Nat. Maters. 1, 26-33 (2002).
[CrossRef]

P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002).
[CrossRef]

2001

2000

R. Kersting, G. Strasser, and K. Unterrainer, "Terahertz phase modulator," Electron. Lett. 36, 1156-1158 (2000).
[CrossRef]

1995

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, "An electro-optically controlled liquid crystal diffraction grating," Appl. Phys. Lett. 67, 2588-2590 (1995).
[CrossRef]

Abbate, G.

F. Vita, A. Marino, V. Tkachenko, G. Abbate, D. E. Lucchetta, and F. Simoni, "Visible and near-infrared characterization and modeling of nanosized holographic-polymer-dispersed liquid crystal gratings," Phys. Rev. E 72, 011702 (2005).
[CrossRef]

Bos, P. J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, "An electro-optically controlled liquid crystal diffraction grating," Appl. Phys. Lett. 67, 2588-2590 (1995).
[CrossRef]

Chen, C.-Y.

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, C.-L. Pan, and R.-P. Pan, "Liquid-crystal-based terahertz tunable Lyot filter," Appl. Phys. Lett. 88, 101107 (2006).
[CrossRef]

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, "Magnetically tunable room-temperature 2? liquid crystal terahertz phase shifter," Opt. Express 12, 2625-2630 (2004).
[CrossRef] [PubMed]

Chen, J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, "An electro-optically controlled liquid crystal diffraction grating," Appl. Phys. Lett. 67, 2588-2590 (1995).
[CrossRef]

Ferguson, B.

B. Ferguson and X.-C. Zhang, "Materials for terahertz science and technology," Nat. Maters. 1, 26-33 (2002).
[CrossRef]

Filin, A.

Hangyo, M.

Hsieh, C.-F.

Johnson, D. L.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, "An electro-optically controlled liquid crystal diffraction grating," Appl. Phys. Lett. 67, 2588-2590 (1995).
[CrossRef]

Kersting, R.

A. Filin, M. Stowe, and R. Kersting, "Time-domain differentiation of terahertz pulses," Opt. Lett. 26, 2008-2010 (2001).
[CrossRef]

R. Kersting, G. Strasser, and K. Unterrainer, "Terahertz phase modulator," Electron. Lett. 36, 1156-1158 (2000).
[CrossRef]

Lin, Y.-F.

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, C.-L. Pan, and R.-P. Pan, "Liquid-crystal-based terahertz tunable Lyot filter," Appl. Phys. Lett. 88, 101107 (2006).
[CrossRef]

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, "Magnetically tunable room-temperature 2? liquid crystal terahertz phase shifter," Opt. Express 12, 2625-2630 (2004).
[CrossRef] [PubMed]

Lucchetta, D. E.

F. Vita, A. Marino, V. Tkachenko, G. Abbate, D. E. Lucchetta, and F. Simoni, "Visible and near-infrared characterization and modeling of nanosized holographic-polymer-dispersed liquid crystal gratings," Phys. Rev. E 72, 011702 (2005).
[CrossRef]

Marino, A.

F. Vita, A. Marino, V. Tkachenko, G. Abbate, D. E. Lucchetta, and F. Simoni, "Visible and near-infrared characterization and modeling of nanosized holographic-polymer-dispersed liquid crystal gratings," Phys. Rev. E 72, 011702 (2005).
[CrossRef]

Miyamaru, F.

Pan, C.-L.

Pan, R.-P.

Siegel, P. H.

P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002).
[CrossRef]

Simoni, F.

F. Vita, A. Marino, V. Tkachenko, G. Abbate, D. E. Lucchetta, and F. Simoni, "Visible and near-infrared characterization and modeling of nanosized holographic-polymer-dispersed liquid crystal gratings," Phys. Rev. E 72, 011702 (2005).
[CrossRef]

Stowe, M.

Strasser, G.

R. Kersting, G. Strasser, and K. Unterrainer, "Terahertz phase modulator," Electron. Lett. 36, 1156-1158 (2000).
[CrossRef]

Tanaka, M.

Tani, M.

Tkachenko, V.

F. Vita, A. Marino, V. Tkachenko, G. Abbate, D. E. Lucchetta, and F. Simoni, "Visible and near-infrared characterization and modeling of nanosized holographic-polymer-dispersed liquid crystal gratings," Phys. Rev. E 72, 011702 (2005).
[CrossRef]

Unterrainer, K.

R. Kersting, G. Strasser, and K. Unterrainer, "Terahertz phase modulator," Electron. Lett. 36, 1156-1158 (2000).
[CrossRef]

Vita, F.

F. Vita, A. Marino, V. Tkachenko, G. Abbate, D. E. Lucchetta, and F. Simoni, "Visible and near-infrared characterization and modeling of nanosized holographic-polymer-dispersed liquid crystal gratings," Phys. Rev. E 72, 011702 (2005).
[CrossRef]

Vithana, H.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, "An electro-optically controlled liquid crystal diffraction grating," Appl. Phys. Lett. 67, 2588-2590 (1995).
[CrossRef]

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, "Materials for terahertz science and technology," Nat. Maters. 1, 26-33 (2002).
[CrossRef]

Appl. Phys. Lett.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, "An electro-optically controlled liquid crystal diffraction grating," Appl. Phys. Lett. 67, 2588-2590 (1995).
[CrossRef]

Jae-Hong Park, Chang-Jae Yu, Jinyool Kim, Sung-Yeop Chung, and Sin-Doo Lee, "Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings," Appl. Phys. Lett. 83, 1918-1920 (2003).
[CrossRef]

Fuzi Yang and J. R. Sambles, "Microwave liquid-crystal variable phase grating," Appl. Phys. Lett. 85, 2041-2043 (2004).
[CrossRef]

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, C.-L. Pan, and R.-P. Pan, "Liquid-crystal-based terahertz tunable Lyot filter," Appl. Phys. Lett. 88, 101107 (2006).
[CrossRef]

Electron. Lett.

R. Kersting, G. Strasser, and K. Unterrainer, "Terahertz phase modulator," Electron. Lett. 36, 1156-1158 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

H.-Y, Wu, C.-F. Hsieh, T.-T. Tang, R.-P. Pan, and C.-L. Pan, "Electrically tunable room-temperature 2? liquid crystal terahertz phase shifter," IEEE Photon. Technol. Lett. 18, 1488-1490 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002).
[CrossRef]

Nat. Mater.

B. Ferguson and X.-C. Zhang, "Materials for terahertz science and technology," Nat. Maters. 1, 26-33 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

F. Vita, A. Marino, V. Tkachenko, G. Abbate, D. E. Lucchetta, and F. Simoni, "Visible and near-infrared characterization and modeling of nanosized holographic-polymer-dispersed liquid crystal gratings," Phys. Rev. E 72, 011702 (2005).
[CrossRef]

Other

F. Garet, J. -L. Coutaz, M. Narzarov, E. Bonnet, O. Parriaux, and G. Racine, "THz time-domain spectroscopy study of grating couplers and segmented grating filters," Digest of Joint 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electron. 181-182 (2004).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

D. Mittleman, Terahertz Imaging, Sensing with THz radiation (Spring-Verlag, New York 2002).

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed., (Oxford, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of a generic binary phase grating.

Fig. 2.
Fig. 2.

(a). Experimental setup; H: magnetic field, MHA: metallic hole array used as narrow band filter. (b) Construction of the LC phase grating; dimensions were shown.

Fig. 3.
Fig. 3.

Temporal profiles of the 0th order diffracted THz pulses through the phase grating and that of a reference sample. The inset presented the magnified view for extraordinary and ordinary waves.

Fig. 4.
Fig. 4.

Diffraction efficiencies of the 0th order as a function of frequency (f). The solid and dashed lines were theoretical curves for ordinary and extraordinary waves. The open and the closed circles represented experimental result

Fig. 5.
Fig. 5.

Diffraction efficiencies as a function of diffraction angle (θ) for the 0.3 THz-beam. The grating operated as a variable beam splitter for the 0th and 1st orders diffracted beams.

Fig. 6.
Fig. 6.

Polarization beam splitting using the LC phase grating. (a) Magnetic field was in the ydirection. (b) Magnetic field was in the z-direction.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( θ ) = Σ n = 1 odd nh ( n + 1 ) h E 0 e iky sin θ e ( n 1 + i κ 1 ) kd dy ,
E 2 ( θ ) = Σ n = 0 even nh ( n + 1 ) h E 0 e iky sin θ e ( n 2 + i κ 2 ) kd dy ,
E = E 1 ( θ ) + E 2 ( θ ) ,
1 Λ 2 Λ 2 Λ 2 e i ϕ e i ( 2 πmy Λ ) dy 2
η m = { cos 2 ( Δ ϕ 2 ) if m = 0 , [ ( 2 m π ) sin ( m π 2 ) ] 2 sin 2 ( Δ ϕ 2 ) if m 0 ,

Metrics