Abstract

A silicon hierarchical structure, silicon nanoporous pillar array (Si-NPA), was prepared by a hydrothermal etching method. The architecture of Si-NPA was characterized to be a regular array of micron-sized, quasi-identical and nanoporous silicon pillars with an additional porous layer beneath the array. The pore walls were proved to be consisted of a SiOx matrix and dispersive silicon nanocrystallites. An integral reflectivity below 4% was achieved in the wavelength range of 240–2400 nm. Three photoluminescence bands, one blue and two red, were observed at room temperature and attributed to the recombination processes through band-to-band transition and luminescent centers, respectively. The structural and physical properties indicate that Si-NPA might be as both a functional silicon nanostructure and a template for assembling silicon-based nanocomposites in fabricating optoelectronic nanodevices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57, 1046-1048 (1990).
    [CrossRef]
  2. M. W. Shao, Y. Y. Shan, N. B. Wong, and S. T. Lee, "Silicon nanowire sensors for bioanalystical applications: glucose and hydrogen peroxide detection," Adv. Funct. Mater. 15, 1478-1482 (2005).
    [CrossRef]
  3. J. Heitmann, F. Muller, M. Zacharias, and U. Gosele, "Silicon nanocrystals: Size matters," Adv. Mater. 17, 795-803 (2005).
    [CrossRef]
  4. J. M. Garguilo, F. A. M. Koeck, R. J. Nemanich, X. C. Xiao, J. A. Carlisle, and O. Auciello, "Thermionic field emission from nanocrystalline diamond-coated silicon tip arrays," Phys. Rev. B 72, 165404 (2005).
    [CrossRef]
  5. S. Fujita, K. Uchida, S. Yasuda, R. Ohba, and T. Tanamoto, "Novel random number generators based on Si nanodevices for mobile communication security systems," Nanotechnology 3, 309-312 (2003).
  6. M. Kanechika, N. Sugimoto, and Y. Mitsushima, "Field-emission characteristics of a silicon tip defined by oxygen precipitate," J. Appl. Phys. 98, 054907 (2005).
    [CrossRef]
  7. G. Zheng, W. Lu, S. Jin, and C. M. Lieber, "Synthesis and fabrication of high-performance n-type silicon nanowire transistors," Adv. Mater. 16, 1890-1893 (2004).
    [CrossRef]
  8. W. Sun, J. E. Puzas, T. J. Sheu, X. Liu, and P. M. Fauchet, "Nano- and microscale porous silicon as a cell interface for bone-tissue engineering," Adv. Mater. 19, 921-924 (2007).
    [CrossRef]
  9. N. G. Shang, F. Y. Meng, F. C. K. Au, Q. Li, C. S. Lee, I. Bello, and S. T. Lee, "Fabrication and field emission of high-density silicon cone arrays," Adv. Mater. 14, 1308-1311 (2002).
    [CrossRef]
  10. D. V. Scheible and R. H. Blick, "Silicon nanopillars for mechanical single-electron transport," Appl. Phys. Lett. 84, 4632-4634 (2004).
    [CrossRef]
  11. B. Cluzel, N. Pauc, V. Calvo, T. Charvolin, and E. Hadji, "Nanobox array for silicon-on-insulator luminescence enhancement at room temperature," Appl. Phys. Lett. 88,133120 (2006).
    [CrossRef]
  12. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. -T. Lee, and J. Zhu, "Aligned single-crystalline Si nanowire arrays for photovoltaic applications," Small 1, 1062-1067 (2005).
    [CrossRef]
  13. X. Y. Chen, Y. F. Lu, L. J. Tang, Y. H. Wu, B. J. Cho, X. J. Xu, J. R. Dong, and W. D. Song, "Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition," J. Appl. Lett. 97, 014913 (2005).
  14. X. Cheng, Z.-D. Feng, and G.-F. Luo, "Effect of potential steps on porous silicon formation," Electrochimica Acta. 48, 497-501 (2003).
    [CrossRef]
  15. K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, "Reflection properties of nanostructure-arrayed silicon surfaces," Nanotechnology 11, 161-164 (2000).
    [CrossRef]
  16. S. Strehlke, S. Bastide, and C. Levy-Clement, "Optimization of porous silicon reflectance for silicon photovoltaic cells," Sol. Energy Mater. Sol. Cells 58, 399-409 (1999).
    [CrossRef]
  17. M. Lipinski, S. Bastide, P. Panek, and C. Levy-Clement, "Porous silicon antireflection coating by electrochemical and chemical methods for silicon solar cells manufacturing," Phys. Stat. Sol. A 197, 512-517 (2003).
    [CrossRef]
  18. M. V. Wolkin, J. Jorne, P. M. Faucher, G. Allan, and C. Delerue, "Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen," Phys. Rev. Lett. 82, 197-200 (1999).
    [CrossRef]
  19. G. G. Qin and Y. J. Li, "Photoluminescence mechanism model for oxidized porous silicon and nanoscale-silicon-particle-embedded silicon oxide," Phys. Rev. B 68, 085309 (2003).
    [CrossRef]
  20. J. Q. Duan, H. Z. Song, G. Q. Yao, L. Z. Zhang, B. R. Zhang, and G. G. Qin, "Variation of double-peak structure in photoluminescence spectra from porous silicon with excitation wavelength," Superlattices Microstruct. 16, 55-58 (1994).
    [CrossRef]
  21. P. Li, G. Z. Wang, Y. R. Ma, and R. C. Fang, "Origin of the blue and red photoluminescence from aged porous silicon," Phys. Rev. B 58, 4057-4065 (1998-I).
    [CrossRef]
  22. X. L. Wu, J. Y. Fan, T. Qiu, X. Yang, G. G. Siu, and P. K. Chu, "Experimental evidence for the quantum confinement effect in 3c-SiC nanocrystallines," Phys. Rev. Lett. 94, 026102 (2005).
    [CrossRef] [PubMed]
  23. Md. N. Islam and S. Kumar, "Influence of surface states on the photoluminescence from silicon nanostructures," J. Appl. Phys. 93, 1753-1759 (2003).
    [CrossRef]
  24. M. Bruno, M. Palummo, A. Marini, R. D. Sole, and S. Ossicini, "From Si nanowires to porous silicon: The role of excitonic effects," Phys. Rev. Lett. 98, 036807 (2007).
    [CrossRef] [PubMed]
  25. Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, "Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites," Phys. Rev. B 48, 2827-2830(1993-II)).
    [CrossRef]
  26. D. W. Cooke, B. L. Bennett, E. H. Famum, W. L. Hults, K. E. Sickafus, J. F. Smith, and J. L. Smith, T. N. Taylor, P. Tiwari, and A. M. Porits, "SiOx luminescence from light-emitting porous silicon: Support for the quantum confinement/luminescence center model," Appl. Phys. Lett. 68, 1663-1665 (1996).
    [CrossRef]
  27. R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, "Photoluminescence in the amorphous system SiOx," J. Appl. Phys. 52, 4241-4243 (1981).
    [CrossRef]

2007 (2)

W. Sun, J. E. Puzas, T. J. Sheu, X. Liu, and P. M. Fauchet, "Nano- and microscale porous silicon as a cell interface for bone-tissue engineering," Adv. Mater. 19, 921-924 (2007).
[CrossRef]

M. Bruno, M. Palummo, A. Marini, R. D. Sole, and S. Ossicini, "From Si nanowires to porous silicon: The role of excitonic effects," Phys. Rev. Lett. 98, 036807 (2007).
[CrossRef] [PubMed]

2006 (1)

B. Cluzel, N. Pauc, V. Calvo, T. Charvolin, and E. Hadji, "Nanobox array for silicon-on-insulator luminescence enhancement at room temperature," Appl. Phys. Lett. 88,133120 (2006).
[CrossRef]

2005 (7)

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. -T. Lee, and J. Zhu, "Aligned single-crystalline Si nanowire arrays for photovoltaic applications," Small 1, 1062-1067 (2005).
[CrossRef]

X. Y. Chen, Y. F. Lu, L. J. Tang, Y. H. Wu, B. J. Cho, X. J. Xu, J. R. Dong, and W. D. Song, "Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition," J. Appl. Lett. 97, 014913 (2005).

M. Kanechika, N. Sugimoto, and Y. Mitsushima, "Field-emission characteristics of a silicon tip defined by oxygen precipitate," J. Appl. Phys. 98, 054907 (2005).
[CrossRef]

M. W. Shao, Y. Y. Shan, N. B. Wong, and S. T. Lee, "Silicon nanowire sensors for bioanalystical applications: glucose and hydrogen peroxide detection," Adv. Funct. Mater. 15, 1478-1482 (2005).
[CrossRef]

J. Heitmann, F. Muller, M. Zacharias, and U. Gosele, "Silicon nanocrystals: Size matters," Adv. Mater. 17, 795-803 (2005).
[CrossRef]

J. M. Garguilo, F. A. M. Koeck, R. J. Nemanich, X. C. Xiao, J. A. Carlisle, and O. Auciello, "Thermionic field emission from nanocrystalline diamond-coated silicon tip arrays," Phys. Rev. B 72, 165404 (2005).
[CrossRef]

X. L. Wu, J. Y. Fan, T. Qiu, X. Yang, G. G. Siu, and P. K. Chu, "Experimental evidence for the quantum confinement effect in 3c-SiC nanocrystallines," Phys. Rev. Lett. 94, 026102 (2005).
[CrossRef] [PubMed]

2004 (2)

G. Zheng, W. Lu, S. Jin, and C. M. Lieber, "Synthesis and fabrication of high-performance n-type silicon nanowire transistors," Adv. Mater. 16, 1890-1893 (2004).
[CrossRef]

D. V. Scheible and R. H. Blick, "Silicon nanopillars for mechanical single-electron transport," Appl. Phys. Lett. 84, 4632-4634 (2004).
[CrossRef]

2003 (5)

M. Lipinski, S. Bastide, P. Panek, and C. Levy-Clement, "Porous silicon antireflection coating by electrochemical and chemical methods for silicon solar cells manufacturing," Phys. Stat. Sol. A 197, 512-517 (2003).
[CrossRef]

X. Cheng, Z.-D. Feng, and G.-F. Luo, "Effect of potential steps on porous silicon formation," Electrochimica Acta. 48, 497-501 (2003).
[CrossRef]

S. Fujita, K. Uchida, S. Yasuda, R. Ohba, and T. Tanamoto, "Novel random number generators based on Si nanodevices for mobile communication security systems," Nanotechnology 3, 309-312 (2003).

Md. N. Islam and S. Kumar, "Influence of surface states on the photoluminescence from silicon nanostructures," J. Appl. Phys. 93, 1753-1759 (2003).
[CrossRef]

G. G. Qin and Y. J. Li, "Photoluminescence mechanism model for oxidized porous silicon and nanoscale-silicon-particle-embedded silicon oxide," Phys. Rev. B 68, 085309 (2003).
[CrossRef]

2002 (1)

N. G. Shang, F. Y. Meng, F. C. K. Au, Q. Li, C. S. Lee, I. Bello, and S. T. Lee, "Fabrication and field emission of high-density silicon cone arrays," Adv. Mater. 14, 1308-1311 (2002).
[CrossRef]

2000 (1)

K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, "Reflection properties of nanostructure-arrayed silicon surfaces," Nanotechnology 11, 161-164 (2000).
[CrossRef]

1999 (2)

S. Strehlke, S. Bastide, and C. Levy-Clement, "Optimization of porous silicon reflectance for silicon photovoltaic cells," Sol. Energy Mater. Sol. Cells 58, 399-409 (1999).
[CrossRef]

M. V. Wolkin, J. Jorne, P. M. Faucher, G. Allan, and C. Delerue, "Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen," Phys. Rev. Lett. 82, 197-200 (1999).
[CrossRef]

1996 (1)

D. W. Cooke, B. L. Bennett, E. H. Famum, W. L. Hults, K. E. Sickafus, J. F. Smith, and J. L. Smith, T. N. Taylor, P. Tiwari, and A. M. Porits, "SiOx luminescence from light-emitting porous silicon: Support for the quantum confinement/luminescence center model," Appl. Phys. Lett. 68, 1663-1665 (1996).
[CrossRef]

1994 (1)

J. Q. Duan, H. Z. Song, G. Q. Yao, L. Z. Zhang, B. R. Zhang, and G. G. Qin, "Variation of double-peak structure in photoluminescence spectra from porous silicon with excitation wavelength," Superlattices Microstruct. 16, 55-58 (1994).
[CrossRef]

1990 (1)

L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57, 1046-1048 (1990).
[CrossRef]

1981 (1)

R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, "Photoluminescence in the amorphous system SiOx," J. Appl. Phys. 52, 4241-4243 (1981).
[CrossRef]

Acet, M.

K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, "Reflection properties of nanostructure-arrayed silicon surfaces," Nanotechnology 11, 161-164 (2000).
[CrossRef]

Allan, G.

M. V. Wolkin, J. Jorne, P. M. Faucher, G. Allan, and C. Delerue, "Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen," Phys. Rev. Lett. 82, 197-200 (1999).
[CrossRef]

Au, F. C. K.

N. G. Shang, F. Y. Meng, F. C. K. Au, Q. Li, C. S. Lee, I. Bello, and S. T. Lee, "Fabrication and field emission of high-density silicon cone arrays," Adv. Mater. 14, 1308-1311 (2002).
[CrossRef]

Auciello, O.

J. M. Garguilo, F. A. M. Koeck, R. J. Nemanich, X. C. Xiao, J. A. Carlisle, and O. Auciello, "Thermionic field emission from nanocrystalline diamond-coated silicon tip arrays," Phys. Rev. B 72, 165404 (2005).
[CrossRef]

Bastide, S.

M. Lipinski, S. Bastide, P. Panek, and C. Levy-Clement, "Porous silicon antireflection coating by electrochemical and chemical methods for silicon solar cells manufacturing," Phys. Stat. Sol. A 197, 512-517 (2003).
[CrossRef]

S. Strehlke, S. Bastide, and C. Levy-Clement, "Optimization of porous silicon reflectance for silicon photovoltaic cells," Sol. Energy Mater. Sol. Cells 58, 399-409 (1999).
[CrossRef]

Bello, I.

N. G. Shang, F. Y. Meng, F. C. K. Au, Q. Li, C. S. Lee, I. Bello, and S. T. Lee, "Fabrication and field emission of high-density silicon cone arrays," Adv. Mater. 14, 1308-1311 (2002).
[CrossRef]

Bennett, B. L.

D. W. Cooke, B. L. Bennett, E. H. Famum, W. L. Hults, K. E. Sickafus, J. F. Smith, and J. L. Smith, T. N. Taylor, P. Tiwari, and A. M. Porits, "SiOx luminescence from light-emitting porous silicon: Support for the quantum confinement/luminescence center model," Appl. Phys. Lett. 68, 1663-1665 (1996).
[CrossRef]

Blick, R. H.

D. V. Scheible and R. H. Blick, "Silicon nanopillars for mechanical single-electron transport," Appl. Phys. Lett. 84, 4632-4634 (2004).
[CrossRef]

Bruno, M.

M. Bruno, M. Palummo, A. Marini, R. D. Sole, and S. Ossicini, "From Si nanowires to porous silicon: The role of excitonic effects," Phys. Rev. Lett. 98, 036807 (2007).
[CrossRef] [PubMed]

Calvo, V.

B. Cluzel, N. Pauc, V. Calvo, T. Charvolin, and E. Hadji, "Nanobox array for silicon-on-insulator luminescence enhancement at room temperature," Appl. Phys. Lett. 88,133120 (2006).
[CrossRef]

Canham, L. T.

L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57, 1046-1048 (1990).
[CrossRef]

Carius, R.

R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, "Photoluminescence in the amorphous system SiOx," J. Appl. Phys. 52, 4241-4243 (1981).
[CrossRef]

Carl, A.

K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, "Reflection properties of nanostructure-arrayed silicon surfaces," Nanotechnology 11, 161-164 (2000).
[CrossRef]

Carlisle, J. A.

J. M. Garguilo, F. A. M. Koeck, R. J. Nemanich, X. C. Xiao, J. A. Carlisle, and O. Auciello, "Thermionic field emission from nanocrystalline diamond-coated silicon tip arrays," Phys. Rev. B 72, 165404 (2005).
[CrossRef]

Charvolin, T.

B. Cluzel, N. Pauc, V. Calvo, T. Charvolin, and E. Hadji, "Nanobox array for silicon-on-insulator luminescence enhancement at room temperature," Appl. Phys. Lett. 88,133120 (2006).
[CrossRef]

Chen, X. Y.

X. Y. Chen, Y. F. Lu, L. J. Tang, Y. H. Wu, B. J. Cho, X. J. Xu, J. R. Dong, and W. D. Song, "Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition," J. Appl. Lett. 97, 014913 (2005).

Cheng, X.

X. Cheng, Z.-D. Feng, and G.-F. Luo, "Effect of potential steps on porous silicon formation," Electrochimica Acta. 48, 497-501 (2003).
[CrossRef]

Cho, B. J.

X. Y. Chen, Y. F. Lu, L. J. Tang, Y. H. Wu, B. J. Cho, X. J. Xu, J. R. Dong, and W. D. Song, "Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition," J. Appl. Lett. 97, 014913 (2005).

Chu, P. K.

X. L. Wu, J. Y. Fan, T. Qiu, X. Yang, G. G. Siu, and P. K. Chu, "Experimental evidence for the quantum confinement effect in 3c-SiC nanocrystallines," Phys. Rev. Lett. 94, 026102 (2005).
[CrossRef] [PubMed]

Cluzel, B.

B. Cluzel, N. Pauc, V. Calvo, T. Charvolin, and E. Hadji, "Nanobox array for silicon-on-insulator luminescence enhancement at room temperature," Appl. Phys. Lett. 88,133120 (2006).
[CrossRef]

Cooke, D. W.

D. W. Cooke, B. L. Bennett, E. H. Famum, W. L. Hults, K. E. Sickafus, J. F. Smith, and J. L. Smith, T. N. Taylor, P. Tiwari, and A. M. Porits, "SiOx luminescence from light-emitting porous silicon: Support for the quantum confinement/luminescence center model," Appl. Phys. Lett. 68, 1663-1665 (1996).
[CrossRef]

Delerue, C.

M. V. Wolkin, J. Jorne, P. M. Faucher, G. Allan, and C. Delerue, "Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen," Phys. Rev. Lett. 82, 197-200 (1999).
[CrossRef]

Dong, J. R.

X. Y. Chen, Y. F. Lu, L. J. Tang, Y. H. Wu, B. J. Cho, X. J. Xu, J. R. Dong, and W. D. Song, "Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition," J. Appl. Lett. 97, 014913 (2005).

Duan, J. Q.

J. Q. Duan, H. Z. Song, G. Q. Yao, L. Z. Zhang, B. R. Zhang, and G. G. Qin, "Variation of double-peak structure in photoluminescence spectra from porous silicon with excitation wavelength," Superlattices Microstruct. 16, 55-58 (1994).
[CrossRef]

Famum, E. H.

D. W. Cooke, B. L. Bennett, E. H. Famum, W. L. Hults, K. E. Sickafus, J. F. Smith, and J. L. Smith, T. N. Taylor, P. Tiwari, and A. M. Porits, "SiOx luminescence from light-emitting porous silicon: Support for the quantum confinement/luminescence center model," Appl. Phys. Lett. 68, 1663-1665 (1996).
[CrossRef]

Fan, J. Y.

X. L. Wu, J. Y. Fan, T. Qiu, X. Yang, G. G. Siu, and P. K. Chu, "Experimental evidence for the quantum confinement effect in 3c-SiC nanocrystallines," Phys. Rev. Lett. 94, 026102 (2005).
[CrossRef] [PubMed]

Faucher, P. M.

M. V. Wolkin, J. Jorne, P. M. Faucher, G. Allan, and C. Delerue, "Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen," Phys. Rev. Lett. 82, 197-200 (1999).
[CrossRef]

Fauchet, P. M.

W. Sun, J. E. Puzas, T. J. Sheu, X. Liu, and P. M. Fauchet, "Nano- and microscale porous silicon as a cell interface for bone-tissue engineering," Adv. Mater. 19, 921-924 (2007).
[CrossRef]

Feng, Z.-D.

X. Cheng, Z.-D. Feng, and G.-F. Luo, "Effect of potential steps on porous silicon formation," Electrochimica Acta. 48, 497-501 (2003).
[CrossRef]

Fischer, R.

R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, "Photoluminescence in the amorphous system SiOx," J. Appl. Phys. 52, 4241-4243 (1981).
[CrossRef]

Fujita, S.

S. Fujita, K. Uchida, S. Yasuda, R. Ohba, and T. Tanamoto, "Novel random number generators based on Si nanodevices for mobile communication security systems," Nanotechnology 3, 309-312 (2003).

Garguilo, J. M.

J. M. Garguilo, F. A. M. Koeck, R. J. Nemanich, X. C. Xiao, J. A. Carlisle, and O. Auciello, "Thermionic field emission from nanocrystalline diamond-coated silicon tip arrays," Phys. Rev. B 72, 165404 (2005).
[CrossRef]

Gosele, U.

J. Heitmann, F. Muller, M. Zacharias, and U. Gosele, "Silicon nanocrystals: Size matters," Adv. Mater. 17, 795-803 (2005).
[CrossRef]

Hadji, E.

B. Cluzel, N. Pauc, V. Calvo, T. Charvolin, and E. Hadji, "Nanobox array for silicon-on-insulator luminescence enhancement at room temperature," Appl. Phys. Lett. 88,133120 (2006).
[CrossRef]

Hadobas, K.

K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, "Reflection properties of nanostructure-arrayed silicon surfaces," Nanotechnology 11, 161-164 (2000).
[CrossRef]

Heitmann, J.

J. Heitmann, F. Muller, M. Zacharias, and U. Gosele, "Silicon nanocrystals: Size matters," Adv. Mater. 17, 795-803 (2005).
[CrossRef]

Holzenkampfer, E.

R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, "Photoluminescence in the amorphous system SiOx," J. Appl. Phys. 52, 4241-4243 (1981).
[CrossRef]

Hults, W. L.

D. W. Cooke, B. L. Bennett, E. H. Famum, W. L. Hults, K. E. Sickafus, J. F. Smith, and J. L. Smith, T. N. Taylor, P. Tiwari, and A. M. Porits, "SiOx luminescence from light-emitting porous silicon: Support for the quantum confinement/luminescence center model," Appl. Phys. Lett. 68, 1663-1665 (1996).
[CrossRef]

Islam, Md. N.

Md. N. Islam and S. Kumar, "Influence of surface states on the photoluminescence from silicon nanostructures," J. Appl. Phys. 93, 1753-1759 (2003).
[CrossRef]

Jin, S.

G. Zheng, W. Lu, S. Jin, and C. M. Lieber, "Synthesis and fabrication of high-performance n-type silicon nanowire transistors," Adv. Mater. 16, 1890-1893 (2004).
[CrossRef]

Jorne, J.

M. V. Wolkin, J. Jorne, P. M. Faucher, G. Allan, and C. Delerue, "Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen," Phys. Rev. Lett. 82, 197-200 (1999).
[CrossRef]

Kanechika, M.

M. Kanechika, N. Sugimoto, and Y. Mitsushima, "Field-emission characteristics of a silicon tip defined by oxygen precipitate," J. Appl. Phys. 98, 054907 (2005).
[CrossRef]

Kirsch, S.

K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, "Reflection properties of nanostructure-arrayed silicon surfaces," Nanotechnology 11, 161-164 (2000).
[CrossRef]

Koeck, F. A. M.

J. M. Garguilo, F. A. M. Koeck, R. J. Nemanich, X. C. Xiao, J. A. Carlisle, and O. Auciello, "Thermionic field emission from nanocrystalline diamond-coated silicon tip arrays," Phys. Rev. B 72, 165404 (2005).
[CrossRef]

Kumar,, S.

Md. N. Islam and S. Kumar, "Influence of surface states on the photoluminescence from silicon nanostructures," J. Appl. Phys. 93, 1753-1759 (2003).
[CrossRef]

Lee, C. S.

N. G. Shang, F. Y. Meng, F. C. K. Au, Q. Li, C. S. Lee, I. Bello, and S. T. Lee, "Fabrication and field emission of high-density silicon cone arrays," Adv. Mater. 14, 1308-1311 (2002).
[CrossRef]

Lee, S. T.

M. W. Shao, Y. Y. Shan, N. B. Wong, and S. T. Lee, "Silicon nanowire sensors for bioanalystical applications: glucose and hydrogen peroxide detection," Adv. Funct. Mater. 15, 1478-1482 (2005).
[CrossRef]

N. G. Shang, F. Y. Meng, F. C. K. Au, Q. Li, C. S. Lee, I. Bello, and S. T. Lee, "Fabrication and field emission of high-density silicon cone arrays," Adv. Mater. 14, 1308-1311 (2002).
[CrossRef]

Lee, S. -T.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. -T. Lee, and J. Zhu, "Aligned single-crystalline Si nanowire arrays for photovoltaic applications," Small 1, 1062-1067 (2005).
[CrossRef]

Levy-Clement, C.

M. Lipinski, S. Bastide, P. Panek, and C. Levy-Clement, "Porous silicon antireflection coating by electrochemical and chemical methods for silicon solar cells manufacturing," Phys. Stat. Sol. A 197, 512-517 (2003).
[CrossRef]

S. Strehlke, S. Bastide, and C. Levy-Clement, "Optimization of porous silicon reflectance for silicon photovoltaic cells," Sol. Energy Mater. Sol. Cells 58, 399-409 (1999).
[CrossRef]

Li, Q.

N. G. Shang, F. Y. Meng, F. C. K. Au, Q. Li, C. S. Lee, I. Bello, and S. T. Lee, "Fabrication and field emission of high-density silicon cone arrays," Adv. Mater. 14, 1308-1311 (2002).
[CrossRef]

Li, Y. J.

G. G. Qin and Y. J. Li, "Photoluminescence mechanism model for oxidized porous silicon and nanoscale-silicon-particle-embedded silicon oxide," Phys. Rev. B 68, 085309 (2003).
[CrossRef]

Lieber, C. M.

G. Zheng, W. Lu, S. Jin, and C. M. Lieber, "Synthesis and fabrication of high-performance n-type silicon nanowire transistors," Adv. Mater. 16, 1890-1893 (2004).
[CrossRef]

Lipinski, M.

M. Lipinski, S. Bastide, P. Panek, and C. Levy-Clement, "Porous silicon antireflection coating by electrochemical and chemical methods for silicon solar cells manufacturing," Phys. Stat. Sol. A 197, 512-517 (2003).
[CrossRef]

Liu, X.

W. Sun, J. E. Puzas, T. J. Sheu, X. Liu, and P. M. Fauchet, "Nano- and microscale porous silicon as a cell interface for bone-tissue engineering," Adv. Mater. 19, 921-924 (2007).
[CrossRef]

Lu, W.

G. Zheng, W. Lu, S. Jin, and C. M. Lieber, "Synthesis and fabrication of high-performance n-type silicon nanowire transistors," Adv. Mater. 16, 1890-1893 (2004).
[CrossRef]

Lu, Y. F.

X. Y. Chen, Y. F. Lu, L. J. Tang, Y. H. Wu, B. J. Cho, X. J. Xu, J. R. Dong, and W. D. Song, "Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition," J. Appl. Lett. 97, 014913 (2005).

Luo, G.-F.

X. Cheng, Z.-D. Feng, and G.-F. Luo, "Effect of potential steps on porous silicon formation," Electrochimica Acta. 48, 497-501 (2003).
[CrossRef]

Marini, A.

M. Bruno, M. Palummo, A. Marini, R. D. Sole, and S. Ossicini, "From Si nanowires to porous silicon: The role of excitonic effects," Phys. Rev. Lett. 98, 036807 (2007).
[CrossRef] [PubMed]

Meng, F. Y.

N. G. Shang, F. Y. Meng, F. C. K. Au, Q. Li, C. S. Lee, I. Bello, and S. T. Lee, "Fabrication and field emission of high-density silicon cone arrays," Adv. Mater. 14, 1308-1311 (2002).
[CrossRef]

Mitsushima, Y.

M. Kanechika, N. Sugimoto, and Y. Mitsushima, "Field-emission characteristics of a silicon tip defined by oxygen precipitate," J. Appl. Phys. 98, 054907 (2005).
[CrossRef]

Muller, F.

J. Heitmann, F. Muller, M. Zacharias, and U. Gosele, "Silicon nanocrystals: Size matters," Adv. Mater. 17, 795-803 (2005).
[CrossRef]

Nemanich, R. J.

J. M. Garguilo, F. A. M. Koeck, R. J. Nemanich, X. C. Xiao, J. A. Carlisle, and O. Auciello, "Thermionic field emission from nanocrystalline diamond-coated silicon tip arrays," Phys. Rev. B 72, 165404 (2005).
[CrossRef]

Ohba, R.

S. Fujita, K. Uchida, S. Yasuda, R. Ohba, and T. Tanamoto, "Novel random number generators based on Si nanodevices for mobile communication security systems," Nanotechnology 3, 309-312 (2003).

Ossicini, S.

M. Bruno, M. Palummo, A. Marini, R. D. Sole, and S. Ossicini, "From Si nanowires to porous silicon: The role of excitonic effects," Phys. Rev. Lett. 98, 036807 (2007).
[CrossRef] [PubMed]

Palummo, M.

M. Bruno, M. Palummo, A. Marini, R. D. Sole, and S. Ossicini, "From Si nanowires to porous silicon: The role of excitonic effects," Phys. Rev. Lett. 98, 036807 (2007).
[CrossRef] [PubMed]

Panek, P.

M. Lipinski, S. Bastide, P. Panek, and C. Levy-Clement, "Porous silicon antireflection coating by electrochemical and chemical methods for silicon solar cells manufacturing," Phys. Stat. Sol. A 197, 512-517 (2003).
[CrossRef]

Pauc, N.

B. Cluzel, N. Pauc, V. Calvo, T. Charvolin, and E. Hadji, "Nanobox array for silicon-on-insulator luminescence enhancement at room temperature," Appl. Phys. Lett. 88,133120 (2006).
[CrossRef]

Peng, K.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. -T. Lee, and J. Zhu, "Aligned single-crystalline Si nanowire arrays for photovoltaic applications," Small 1, 1062-1067 (2005).
[CrossRef]

Porits, A. M.

D. W. Cooke, B. L. Bennett, E. H. Famum, W. L. Hults, K. E. Sickafus, J. F. Smith, and J. L. Smith, T. N. Taylor, P. Tiwari, and A. M. Porits, "SiOx luminescence from light-emitting porous silicon: Support for the quantum confinement/luminescence center model," Appl. Phys. Lett. 68, 1663-1665 (1996).
[CrossRef]

Puzas, J. E.

W. Sun, J. E. Puzas, T. J. Sheu, X. Liu, and P. M. Fauchet, "Nano- and microscale porous silicon as a cell interface for bone-tissue engineering," Adv. Mater. 19, 921-924 (2007).
[CrossRef]

Qin, G. G.

G. G. Qin and Y. J. Li, "Photoluminescence mechanism model for oxidized porous silicon and nanoscale-silicon-particle-embedded silicon oxide," Phys. Rev. B 68, 085309 (2003).
[CrossRef]

J. Q. Duan, H. Z. Song, G. Q. Yao, L. Z. Zhang, B. R. Zhang, and G. G. Qin, "Variation of double-peak structure in photoluminescence spectra from porous silicon with excitation wavelength," Superlattices Microstruct. 16, 55-58 (1994).
[CrossRef]

Qiu, T.

X. L. Wu, J. Y. Fan, T. Qiu, X. Yang, G. G. Siu, and P. K. Chu, "Experimental evidence for the quantum confinement effect in 3c-SiC nanocrystallines," Phys. Rev. Lett. 94, 026102 (2005).
[CrossRef] [PubMed]

Scheible, D. V.

D. V. Scheible and R. H. Blick, "Silicon nanopillars for mechanical single-electron transport," Appl. Phys. Lett. 84, 4632-4634 (2004).
[CrossRef]

Shan, Y. Y.

M. W. Shao, Y. Y. Shan, N. B. Wong, and S. T. Lee, "Silicon nanowire sensors for bioanalystical applications: glucose and hydrogen peroxide detection," Adv. Funct. Mater. 15, 1478-1482 (2005).
[CrossRef]

Shang, N. G.

N. G. Shang, F. Y. Meng, F. C. K. Au, Q. Li, C. S. Lee, I. Bello, and S. T. Lee, "Fabrication and field emission of high-density silicon cone arrays," Adv. Mater. 14, 1308-1311 (2002).
[CrossRef]

Shao, M. W.

M. W. Shao, Y. Y. Shan, N. B. Wong, and S. T. Lee, "Silicon nanowire sensors for bioanalystical applications: glucose and hydrogen peroxide detection," Adv. Funct. Mater. 15, 1478-1482 (2005).
[CrossRef]

Sheu, T. J.

W. Sun, J. E. Puzas, T. J. Sheu, X. Liu, and P. M. Fauchet, "Nano- and microscale porous silicon as a cell interface for bone-tissue engineering," Adv. Mater. 19, 921-924 (2007).
[CrossRef]

Sickafus, K. E.

D. W. Cooke, B. L. Bennett, E. H. Famum, W. L. Hults, K. E. Sickafus, J. F. Smith, and J. L. Smith, T. N. Taylor, P. Tiwari, and A. M. Porits, "SiOx luminescence from light-emitting porous silicon: Support for the quantum confinement/luminescence center model," Appl. Phys. Lett. 68, 1663-1665 (1996).
[CrossRef]

Siu, G. G.

X. L. Wu, J. Y. Fan, T. Qiu, X. Yang, G. G. Siu, and P. K. Chu, "Experimental evidence for the quantum confinement effect in 3c-SiC nanocrystallines," Phys. Rev. Lett. 94, 026102 (2005).
[CrossRef] [PubMed]

Smith, J. F.

D. W. Cooke, B. L. Bennett, E. H. Famum, W. L. Hults, K. E. Sickafus, J. F. Smith, and J. L. Smith, T. N. Taylor, P. Tiwari, and A. M. Porits, "SiOx luminescence from light-emitting porous silicon: Support for the quantum confinement/luminescence center model," Appl. Phys. Lett. 68, 1663-1665 (1996).
[CrossRef]

Smith, J. L.

D. W. Cooke, B. L. Bennett, E. H. Famum, W. L. Hults, K. E. Sickafus, J. F. Smith, and J. L. Smith, T. N. Taylor, P. Tiwari, and A. M. Porits, "SiOx luminescence from light-emitting porous silicon: Support for the quantum confinement/luminescence center model," Appl. Phys. Lett. 68, 1663-1665 (1996).
[CrossRef]

Sole, R. D.

M. Bruno, M. Palummo, A. Marini, R. D. Sole, and S. Ossicini, "From Si nanowires to porous silicon: The role of excitonic effects," Phys. Rev. Lett. 98, 036807 (2007).
[CrossRef] [PubMed]

Song, H. Z.

J. Q. Duan, H. Z. Song, G. Q. Yao, L. Z. Zhang, B. R. Zhang, and G. G. Qin, "Variation of double-peak structure in photoluminescence spectra from porous silicon with excitation wavelength," Superlattices Microstruct. 16, 55-58 (1994).
[CrossRef]

Song, W. D.

X. Y. Chen, Y. F. Lu, L. J. Tang, Y. H. Wu, B. J. Cho, X. J. Xu, J. R. Dong, and W. D. Song, "Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition," J. Appl. Lett. 97, 014913 (2005).

Strehlke, S.

S. Strehlke, S. Bastide, and C. Levy-Clement, "Optimization of porous silicon reflectance for silicon photovoltaic cells," Sol. Energy Mater. Sol. Cells 58, 399-409 (1999).
[CrossRef]

Stuke, J.

R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, "Photoluminescence in the amorphous system SiOx," J. Appl. Phys. 52, 4241-4243 (1981).
[CrossRef]

Sugimoto, N.

M. Kanechika, N. Sugimoto, and Y. Mitsushima, "Field-emission characteristics of a silicon tip defined by oxygen precipitate," J. Appl. Phys. 98, 054907 (2005).
[CrossRef]

Sun, W.

W. Sun, J. E. Puzas, T. J. Sheu, X. Liu, and P. M. Fauchet, "Nano- and microscale porous silicon as a cell interface for bone-tissue engineering," Adv. Mater. 19, 921-924 (2007).
[CrossRef]

Tanamoto, T.

S. Fujita, K. Uchida, S. Yasuda, R. Ohba, and T. Tanamoto, "Novel random number generators based on Si nanodevices for mobile communication security systems," Nanotechnology 3, 309-312 (2003).

Tang, L. J.

X. Y. Chen, Y. F. Lu, L. J. Tang, Y. H. Wu, B. J. Cho, X. J. Xu, J. R. Dong, and W. D. Song, "Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition," J. Appl. Lett. 97, 014913 (2005).

Taylor, T. N.

D. W. Cooke, B. L. Bennett, E. H. Famum, W. L. Hults, K. E. Sickafus, J. F. Smith, and J. L. Smith, T. N. Taylor, P. Tiwari, and A. M. Porits, "SiOx luminescence from light-emitting porous silicon: Support for the quantum confinement/luminescence center model," Appl. Phys. Lett. 68, 1663-1665 (1996).
[CrossRef]

Tiwari, P.

D. W. Cooke, B. L. Bennett, E. H. Famum, W. L. Hults, K. E. Sickafus, J. F. Smith, and J. L. Smith, T. N. Taylor, P. Tiwari, and A. M. Porits, "SiOx luminescence from light-emitting porous silicon: Support for the quantum confinement/luminescence center model," Appl. Phys. Lett. 68, 1663-1665 (1996).
[CrossRef]

Uchida, K.

S. Fujita, K. Uchida, S. Yasuda, R. Ohba, and T. Tanamoto, "Novel random number generators based on Si nanodevices for mobile communication security systems," Nanotechnology 3, 309-312 (2003).

Wassermann, E. F.

K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, "Reflection properties of nanostructure-arrayed silicon surfaces," Nanotechnology 11, 161-164 (2000).
[CrossRef]

Wolkin, M. V.

M. V. Wolkin, J. Jorne, P. M. Faucher, G. Allan, and C. Delerue, "Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen," Phys. Rev. Lett. 82, 197-200 (1999).
[CrossRef]

Wong, N. B.

M. W. Shao, Y. Y. Shan, N. B. Wong, and S. T. Lee, "Silicon nanowire sensors for bioanalystical applications: glucose and hydrogen peroxide detection," Adv. Funct. Mater. 15, 1478-1482 (2005).
[CrossRef]

Wu, X. L.

X. L. Wu, J. Y. Fan, T. Qiu, X. Yang, G. G. Siu, and P. K. Chu, "Experimental evidence for the quantum confinement effect in 3c-SiC nanocrystallines," Phys. Rev. Lett. 94, 026102 (2005).
[CrossRef] [PubMed]

Wu, Y.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. -T. Lee, and J. Zhu, "Aligned single-crystalline Si nanowire arrays for photovoltaic applications," Small 1, 1062-1067 (2005).
[CrossRef]

Wu, Y. H.

X. Y. Chen, Y. F. Lu, L. J. Tang, Y. H. Wu, B. J. Cho, X. J. Xu, J. R. Dong, and W. D. Song, "Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition," J. Appl. Lett. 97, 014913 (2005).

Xiao, X. C.

J. M. Garguilo, F. A. M. Koeck, R. J. Nemanich, X. C. Xiao, J. A. Carlisle, and O. Auciello, "Thermionic field emission from nanocrystalline diamond-coated silicon tip arrays," Phys. Rev. B 72, 165404 (2005).
[CrossRef]

Xu, X. J.

X. Y. Chen, Y. F. Lu, L. J. Tang, Y. H. Wu, B. J. Cho, X. J. Xu, J. R. Dong, and W. D. Song, "Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition," J. Appl. Lett. 97, 014913 (2005).

Xu, Y.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. -T. Lee, and J. Zhu, "Aligned single-crystalline Si nanowire arrays for photovoltaic applications," Small 1, 1062-1067 (2005).
[CrossRef]

Yan, Y.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. -T. Lee, and J. Zhu, "Aligned single-crystalline Si nanowire arrays for photovoltaic applications," Small 1, 1062-1067 (2005).
[CrossRef]

Yang, X.

X. L. Wu, J. Y. Fan, T. Qiu, X. Yang, G. G. Siu, and P. K. Chu, "Experimental evidence for the quantum confinement effect in 3c-SiC nanocrystallines," Phys. Rev. Lett. 94, 026102 (2005).
[CrossRef] [PubMed]

Yao, G. Q.

J. Q. Duan, H. Z. Song, G. Q. Yao, L. Z. Zhang, B. R. Zhang, and G. G. Qin, "Variation of double-peak structure in photoluminescence spectra from porous silicon with excitation wavelength," Superlattices Microstruct. 16, 55-58 (1994).
[CrossRef]

Yasuda, S.

S. Fujita, K. Uchida, S. Yasuda, R. Ohba, and T. Tanamoto, "Novel random number generators based on Si nanodevices for mobile communication security systems," Nanotechnology 3, 309-312 (2003).

Zacharias, M.

J. Heitmann, F. Muller, M. Zacharias, and U. Gosele, "Silicon nanocrystals: Size matters," Adv. Mater. 17, 795-803 (2005).
[CrossRef]

Zhang, B. R.

J. Q. Duan, H. Z. Song, G. Q. Yao, L. Z. Zhang, B. R. Zhang, and G. G. Qin, "Variation of double-peak structure in photoluminescence spectra from porous silicon with excitation wavelength," Superlattices Microstruct. 16, 55-58 (1994).
[CrossRef]

Zhang, L. Z.

J. Q. Duan, H. Z. Song, G. Q. Yao, L. Z. Zhang, B. R. Zhang, and G. G. Qin, "Variation of double-peak structure in photoluminescence spectra from porous silicon with excitation wavelength," Superlattices Microstruct. 16, 55-58 (1994).
[CrossRef]

Zheng, G.

G. Zheng, W. Lu, S. Jin, and C. M. Lieber, "Synthesis and fabrication of high-performance n-type silicon nanowire transistors," Adv. Mater. 16, 1890-1893 (2004).
[CrossRef]

Zhu, J.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. -T. Lee, and J. Zhu, "Aligned single-crystalline Si nanowire arrays for photovoltaic applications," Small 1, 1062-1067 (2005).
[CrossRef]

Adv. Funct. Mater. (1)

M. W. Shao, Y. Y. Shan, N. B. Wong, and S. T. Lee, "Silicon nanowire sensors for bioanalystical applications: glucose and hydrogen peroxide detection," Adv. Funct. Mater. 15, 1478-1482 (2005).
[CrossRef]

Adv. Mater. (4)

J. Heitmann, F. Muller, M. Zacharias, and U. Gosele, "Silicon nanocrystals: Size matters," Adv. Mater. 17, 795-803 (2005).
[CrossRef]

G. Zheng, W. Lu, S. Jin, and C. M. Lieber, "Synthesis and fabrication of high-performance n-type silicon nanowire transistors," Adv. Mater. 16, 1890-1893 (2004).
[CrossRef]

W. Sun, J. E. Puzas, T. J. Sheu, X. Liu, and P. M. Fauchet, "Nano- and microscale porous silicon as a cell interface for bone-tissue engineering," Adv. Mater. 19, 921-924 (2007).
[CrossRef]

N. G. Shang, F. Y. Meng, F. C. K. Au, Q. Li, C. S. Lee, I. Bello, and S. T. Lee, "Fabrication and field emission of high-density silicon cone arrays," Adv. Mater. 14, 1308-1311 (2002).
[CrossRef]

Appl. Phys. Lett. (4)

D. V. Scheible and R. H. Blick, "Silicon nanopillars for mechanical single-electron transport," Appl. Phys. Lett. 84, 4632-4634 (2004).
[CrossRef]

B. Cluzel, N. Pauc, V. Calvo, T. Charvolin, and E. Hadji, "Nanobox array for silicon-on-insulator luminescence enhancement at room temperature," Appl. Phys. Lett. 88,133120 (2006).
[CrossRef]

L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57, 1046-1048 (1990).
[CrossRef]

D. W. Cooke, B. L. Bennett, E. H. Famum, W. L. Hults, K. E. Sickafus, J. F. Smith, and J. L. Smith, T. N. Taylor, P. Tiwari, and A. M. Porits, "SiOx luminescence from light-emitting porous silicon: Support for the quantum confinement/luminescence center model," Appl. Phys. Lett. 68, 1663-1665 (1996).
[CrossRef]

Electrochimica Acta. (1)

X. Cheng, Z.-D. Feng, and G.-F. Luo, "Effect of potential steps on porous silicon formation," Electrochimica Acta. 48, 497-501 (2003).
[CrossRef]

J. Appl. Lett. (1)

X. Y. Chen, Y. F. Lu, L. J. Tang, Y. H. Wu, B. J. Cho, X. J. Xu, J. R. Dong, and W. D. Song, "Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition," J. Appl. Lett. 97, 014913 (2005).

J. Appl. Phys. (3)

M. Kanechika, N. Sugimoto, and Y. Mitsushima, "Field-emission characteristics of a silicon tip defined by oxygen precipitate," J. Appl. Phys. 98, 054907 (2005).
[CrossRef]

R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, "Photoluminescence in the amorphous system SiOx," J. Appl. Phys. 52, 4241-4243 (1981).
[CrossRef]

Md. N. Islam and S. Kumar, "Influence of surface states on the photoluminescence from silicon nanostructures," J. Appl. Phys. 93, 1753-1759 (2003).
[CrossRef]

Nanotechnology (2)

K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, "Reflection properties of nanostructure-arrayed silicon surfaces," Nanotechnology 11, 161-164 (2000).
[CrossRef]

S. Fujita, K. Uchida, S. Yasuda, R. Ohba, and T. Tanamoto, "Novel random number generators based on Si nanodevices for mobile communication security systems," Nanotechnology 3, 309-312 (2003).

Phys. Rev. B (2)

J. M. Garguilo, F. A. M. Koeck, R. J. Nemanich, X. C. Xiao, J. A. Carlisle, and O. Auciello, "Thermionic field emission from nanocrystalline diamond-coated silicon tip arrays," Phys. Rev. B 72, 165404 (2005).
[CrossRef]

G. G. Qin and Y. J. Li, "Photoluminescence mechanism model for oxidized porous silicon and nanoscale-silicon-particle-embedded silicon oxide," Phys. Rev. B 68, 085309 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

M. V. Wolkin, J. Jorne, P. M. Faucher, G. Allan, and C. Delerue, "Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen," Phys. Rev. Lett. 82, 197-200 (1999).
[CrossRef]

M. Bruno, M. Palummo, A. Marini, R. D. Sole, and S. Ossicini, "From Si nanowires to porous silicon: The role of excitonic effects," Phys. Rev. Lett. 98, 036807 (2007).
[CrossRef] [PubMed]

X. L. Wu, J. Y. Fan, T. Qiu, X. Yang, G. G. Siu, and P. K. Chu, "Experimental evidence for the quantum confinement effect in 3c-SiC nanocrystallines," Phys. Rev. Lett. 94, 026102 (2005).
[CrossRef] [PubMed]

Phys. Stat. Sol. A (1)

M. Lipinski, S. Bastide, P. Panek, and C. Levy-Clement, "Porous silicon antireflection coating by electrochemical and chemical methods for silicon solar cells manufacturing," Phys. Stat. Sol. A 197, 512-517 (2003).
[CrossRef]

Small (1)

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. -T. Lee, and J. Zhu, "Aligned single-crystalline Si nanowire arrays for photovoltaic applications," Small 1, 1062-1067 (2005).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

S. Strehlke, S. Bastide, and C. Levy-Clement, "Optimization of porous silicon reflectance for silicon photovoltaic cells," Sol. Energy Mater. Sol. Cells 58, 399-409 (1999).
[CrossRef]

Superlattices Microstruct. (1)

J. Q. Duan, H. Z. Song, G. Q. Yao, L. Z. Zhang, B. R. Zhang, and G. G. Qin, "Variation of double-peak structure in photoluminescence spectra from porous silicon with excitation wavelength," Superlattices Microstruct. 16, 55-58 (1994).
[CrossRef]

Other (2)

P. Li, G. Z. Wang, Y. R. Ma, and R. C. Fang, "Origin of the blue and red photoluminescence from aged porous silicon," Phys. Rev. B 58, 4057-4065 (1998-I).
[CrossRef]

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, "Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites," Phys. Rev. B 48, 2827-2830(1993-II)).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) FE-SEM image of Si-NPA with the sample being titled at an angle of 45°, (b) cross-sectional FE-SEM image of Si-NPA, (c) the amplified image to illustrate the finer pores locating in the transitional porous layer beneath the pillar layer, (d) TEM image of an individual silicon nanoporous pillar, (e) HRTEM image of pore walls, and (f) the size distribution of nc-Si obtained by carrying out statistics over 6 HRTEM images similar to that given in (e).

Fig. 2.
Fig. 2.

Room-temperature XPS result of Si-NPA. Inset: Si 2p peak as well as its fitting results.

Fig. 3.
Fig. 3.

The integral diffuse reflection spectrum taken in the 240~2400 nm wavelength range of Si-NPA, together with that of sc-Si for comparison.

Fig. 4.
Fig. 4.

(a) PL spectra of Si-NPA measured at different excitation wavelengths. (b), (c) and their insets, the PL peak wavelengths and the PL intensities as a function of excited wavelength for the two red emission bands and the blue emission band, respectively.

Fig. 5.
Fig. 5.

The PLE spectra of Si-NPA taken under three different monitored emission wavelengths.

Fig. 6.
Fig. 6.

The schematic plan to illustrate the PL mechanism of Si-NPA.

Metrics