Abstract

We describe a setup for a deep optical dipole trap or lattice designed for holding atoms at temperatures of a few mK, such as alkaline-Earth atoms which have undergone only regular Doppler cooling. We use an external optical cavity to amplify 3.2 W from a commercial single-frequency laser at 532 nm to 523 W. Powers of a few kW, attainable with low-loss optics or higher input powers, allow larger trap volumes for improved atom transfer from magneto-optical traps. We analyze possibilities for cooling inside the deep trap, the induced Stark shifts for calcium, and a cancellation scheme for the intercombination clock transition using an auxiliary laser.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, New York1999).
    [Crossref]
  2. M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
    [Crossref] [PubMed]
  3. H. Katori, T. Ido, Y. Isoya, and M. K-Gonokami, “Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
    [Crossref]
  4. T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T.E. Mehlstäubler, E.M. Rasel, and W. Ertmer, “Doppler Cooling and Trapping on Forbidden Transitions,” Phys. Rev. Lett. 87, 123002 (2001).
    [Crossref] [PubMed]
  5. E. A. Curtis, C.W. Oates, and L. Holberg, “Quenched Narrow-Line Laser Cooling of 40Ca to Near the Photon Recoil Limit,” Phys. Rev. A 64, 031403 (2001).
    [Crossref]
  6. J. W. Dunn, J. W. Thomsen, C. H. Greene, and F. C. Cruz, “Coherent quantum engineering of free-space laser cooling,” Phys. Rev. A 76, 011401(R) (2007).
    [Crossref]
  7. R. Grimm, M. Weidemuller, and Y.B. Ovchinnikov, “Optical dipole trap for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
    [Crossref]
  8. P.S. Jessen and I.H. Deutsch, “Optical lattices,” Adv. At. Mol. Opt. Phys. 37, 95–138 (1996).
  9. Ch Grain, T Nazarova, C Degenhardt, F Vogt, Ch Lisdat, E Tiemann, U Sterr, and F Riehle, “Feasibility of narrow-line optical dipole traps,” Eur. Phys. J. D. 42, 317–324 (2007).
    [Crossref]
  10. A. Mosk, S. Jochim, H. Moritz, Th. Elsässer, and M. Weidmüller, “Resonator-enhanced optical dipole trap for fermionic lithium atoms,” Opt. Lett. 26, 1837–1839 (2001).
    [Crossref]
  11. Y Takasu, K Maki, K Komori, T Takano, K Honda, M Kumakura, T Yabuzaki, and Y Takahashi, “Spin-singlet Bose-Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
    [Crossref] [PubMed]
  12. T Ido and H Katori, “Recoil-Free spectroscopy of neutral Sr Atoms in the Lamb-Dicke regime,” Phys. Rev. Lett. 91, 053001 (2003).
    [Crossref] [PubMed]
  13. Andrew D. Ludlow, Martin M. Boyd, Tanya Zelevinsky, Seth M. Foreman, Sebastian Blatt, Mark Notcutt, Tetsuya Ido, and Jun Ye, “Systematic Study of the 87Sr Clock Transition in an Optical Lattice,” Phys. Rev. Lett. 96, 033003 (2006).
    [Crossref] [PubMed]
  14. Reference table of transitions: http://cfa-www.harvard.edu/amp/ampdata/kurucz23/sekur.html
  15. P. F. Griffin, K. J. Weatherill, S. G. MaLeod, R. M. Potvliege, and C. S. Adams, “Spatially selective loading of an optical lattice by light-shift engineering using an auxiliary laser field,” New. J. Phys. 8, 1367–1377 (2006).
  16. R.W.P. Drever, J.L Hall, F. V. Kowalski, J. Hough, G.M Ford, A.J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1993).
    [Crossref]
  17. L E.E. de Araujo, S. A. Carvalho, L. S. Cruz, A. A. Soares, A. Mirage, D. Pereira, and F. C. Cruz, “Optogalvanic detection of velocity-selective optical pumping in an open, cascade atomic medium,” Opt. Commun. 281, 626–632 (2008).
    [Crossref]

2008 (1)

L E.E. de Araujo, S. A. Carvalho, L. S. Cruz, A. A. Soares, A. Mirage, D. Pereira, and F. C. Cruz, “Optogalvanic detection of velocity-selective optical pumping in an open, cascade atomic medium,” Opt. Commun. 281, 626–632 (2008).
[Crossref]

2007 (2)

J. W. Dunn, J. W. Thomsen, C. H. Greene, and F. C. Cruz, “Coherent quantum engineering of free-space laser cooling,” Phys. Rev. A 76, 011401(R) (2007).
[Crossref]

Ch Grain, T Nazarova, C Degenhardt, F Vogt, Ch Lisdat, E Tiemann, U Sterr, and F Riehle, “Feasibility of narrow-line optical dipole traps,” Eur. Phys. J. D. 42, 317–324 (2007).
[Crossref]

2006 (1)

Andrew D. Ludlow, Martin M. Boyd, Tanya Zelevinsky, Seth M. Foreman, Sebastian Blatt, Mark Notcutt, Tetsuya Ido, and Jun Ye, “Systematic Study of the 87Sr Clock Transition in an Optical Lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref] [PubMed]

2005 (1)

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[Crossref] [PubMed]

2003 (2)

Y Takasu, K Maki, K Komori, T Takano, K Honda, M Kumakura, T Yabuzaki, and Y Takahashi, “Spin-singlet Bose-Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref] [PubMed]

T Ido and H Katori, “Recoil-Free spectroscopy of neutral Sr Atoms in the Lamb-Dicke regime,” Phys. Rev. Lett. 91, 053001 (2003).
[Crossref] [PubMed]

2001 (3)

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T.E. Mehlstäubler, E.M. Rasel, and W. Ertmer, “Doppler Cooling and Trapping on Forbidden Transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[Crossref] [PubMed]

E. A. Curtis, C.W. Oates, and L. Holberg, “Quenched Narrow-Line Laser Cooling of 40Ca to Near the Photon Recoil Limit,” Phys. Rev. A 64, 031403 (2001).
[Crossref]

A. Mosk, S. Jochim, H. Moritz, Th. Elsässer, and M. Weidmüller, “Resonator-enhanced optical dipole trap for fermionic lithium atoms,” Opt. Lett. 26, 1837–1839 (2001).
[Crossref]

2000 (1)

R. Grimm, M. Weidemuller, and Y.B. Ovchinnikov, “Optical dipole trap for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

1999 (1)

H. Katori, T. Ido, Y. Isoya, and M. K-Gonokami, “Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[Crossref]

1996 (1)

P.S. Jessen and I.H. Deutsch, “Optical lattices,” Adv. At. Mol. Opt. Phys. 37, 95–138 (1996).

1993 (1)

R.W.P. Drever, J.L Hall, F. V. Kowalski, J. Hough, G.M Ford, A.J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1993).
[Crossref]

Adams, C. S.

P. F. Griffin, K. J. Weatherill, S. G. MaLeod, R. M. Potvliege, and C. S. Adams, “Spatially selective loading of an optical lattice by light-shift engineering using an auxiliary laser field,” New. J. Phys. 8, 1367–1377 (2006).

Binnewies, T.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T.E. Mehlstäubler, E.M. Rasel, and W. Ertmer, “Doppler Cooling and Trapping on Forbidden Transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[Crossref] [PubMed]

Blatt, Sebastian

Andrew D. Ludlow, Martin M. Boyd, Tanya Zelevinsky, Seth M. Foreman, Sebastian Blatt, Mark Notcutt, Tetsuya Ido, and Jun Ye, “Systematic Study of the 87Sr Clock Transition in an Optical Lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref] [PubMed]

Boyd, Martin M.

Andrew D. Ludlow, Martin M. Boyd, Tanya Zelevinsky, Seth M. Foreman, Sebastian Blatt, Mark Notcutt, Tetsuya Ido, and Jun Ye, “Systematic Study of the 87Sr Clock Transition in an Optical Lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref] [PubMed]

Carvalho, S. A.

L E.E. de Araujo, S. A. Carvalho, L. S. Cruz, A. A. Soares, A. Mirage, D. Pereira, and F. C. Cruz, “Optogalvanic detection of velocity-selective optical pumping in an open, cascade atomic medium,” Opt. Commun. 281, 626–632 (2008).
[Crossref]

Cruz, F. C.

L E.E. de Araujo, S. A. Carvalho, L. S. Cruz, A. A. Soares, A. Mirage, D. Pereira, and F. C. Cruz, “Optogalvanic detection of velocity-selective optical pumping in an open, cascade atomic medium,” Opt. Commun. 281, 626–632 (2008).
[Crossref]

J. W. Dunn, J. W. Thomsen, C. H. Greene, and F. C. Cruz, “Coherent quantum engineering of free-space laser cooling,” Phys. Rev. A 76, 011401(R) (2007).
[Crossref]

Cruz, L. S.

L E.E. de Araujo, S. A. Carvalho, L. S. Cruz, A. A. Soares, A. Mirage, D. Pereira, and F. C. Cruz, “Optogalvanic detection of velocity-selective optical pumping in an open, cascade atomic medium,” Opt. Commun. 281, 626–632 (2008).
[Crossref]

Curtis, E. A.

E. A. Curtis, C.W. Oates, and L. Holberg, “Quenched Narrow-Line Laser Cooling of 40Ca to Near the Photon Recoil Limit,” Phys. Rev. A 64, 031403 (2001).
[Crossref]

de Araujo, L E.E.

L E.E. de Araujo, S. A. Carvalho, L. S. Cruz, A. A. Soares, A. Mirage, D. Pereira, and F. C. Cruz, “Optogalvanic detection of velocity-selective optical pumping in an open, cascade atomic medium,” Opt. Commun. 281, 626–632 (2008).
[Crossref]

Degenhardt, C

Ch Grain, T Nazarova, C Degenhardt, F Vogt, Ch Lisdat, E Tiemann, U Sterr, and F Riehle, “Feasibility of narrow-line optical dipole traps,” Eur. Phys. J. D. 42, 317–324 (2007).
[Crossref]

Deutsch, I.H.

P.S. Jessen and I.H. Deutsch, “Optical lattices,” Adv. At. Mol. Opt. Phys. 37, 95–138 (1996).

Drever, R.W.P.

R.W.P. Drever, J.L Hall, F. V. Kowalski, J. Hough, G.M Ford, A.J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1993).
[Crossref]

Dunn, J. W.

J. W. Dunn, J. W. Thomsen, C. H. Greene, and F. C. Cruz, “Coherent quantum engineering of free-space laser cooling,” Phys. Rev. A 76, 011401(R) (2007).
[Crossref]

Elsässer, Th.

Ertmer, W.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T.E. Mehlstäubler, E.M. Rasel, and W. Ertmer, “Doppler Cooling and Trapping on Forbidden Transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[Crossref] [PubMed]

Ford, G.M

R.W.P. Drever, J.L Hall, F. V. Kowalski, J. Hough, G.M Ford, A.J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1993).
[Crossref]

Foreman, Seth M.

Andrew D. Ludlow, Martin M. Boyd, Tanya Zelevinsky, Seth M. Foreman, Sebastian Blatt, Mark Notcutt, Tetsuya Ido, and Jun Ye, “Systematic Study of the 87Sr Clock Transition in an Optical Lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref] [PubMed]

Grain, Ch

Ch Grain, T Nazarova, C Degenhardt, F Vogt, Ch Lisdat, E Tiemann, U Sterr, and F Riehle, “Feasibility of narrow-line optical dipole traps,” Eur. Phys. J. D. 42, 317–324 (2007).
[Crossref]

Greene, C. H.

J. W. Dunn, J. W. Thomsen, C. H. Greene, and F. C. Cruz, “Coherent quantum engineering of free-space laser cooling,” Phys. Rev. A 76, 011401(R) (2007).
[Crossref]

Griffin, P. F.

P. F. Griffin, K. J. Weatherill, S. G. MaLeod, R. M. Potvliege, and C. S. Adams, “Spatially selective loading of an optical lattice by light-shift engineering using an auxiliary laser field,” New. J. Phys. 8, 1367–1377 (2006).

Grimm, R.

R. Grimm, M. Weidemuller, and Y.B. Ovchinnikov, “Optical dipole trap for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

Hall, J.L

R.W.P. Drever, J.L Hall, F. V. Kowalski, J. Hough, G.M Ford, A.J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1993).
[Crossref]

Helmcke, J.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T.E. Mehlstäubler, E.M. Rasel, and W. Ertmer, “Doppler Cooling and Trapping on Forbidden Transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[Crossref] [PubMed]

Higashi, R.

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[Crossref] [PubMed]

Holberg, L.

E. A. Curtis, C.W. Oates, and L. Holberg, “Quenched Narrow-Line Laser Cooling of 40Ca to Near the Photon Recoil Limit,” Phys. Rev. A 64, 031403 (2001).
[Crossref]

Honda, K

Y Takasu, K Maki, K Komori, T Takano, K Honda, M Kumakura, T Yabuzaki, and Y Takahashi, “Spin-singlet Bose-Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref] [PubMed]

Hong, F.-L.

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[Crossref] [PubMed]

Hough, J.

R.W.P. Drever, J.L Hall, F. V. Kowalski, J. Hough, G.M Ford, A.J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1993).
[Crossref]

Ido, T

T Ido and H Katori, “Recoil-Free spectroscopy of neutral Sr Atoms in the Lamb-Dicke regime,” Phys. Rev. Lett. 91, 053001 (2003).
[Crossref] [PubMed]

Ido, T.

H. Katori, T. Ido, Y. Isoya, and M. K-Gonokami, “Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[Crossref]

Ido, Tetsuya

Andrew D. Ludlow, Martin M. Boyd, Tanya Zelevinsky, Seth M. Foreman, Sebastian Blatt, Mark Notcutt, Tetsuya Ido, and Jun Ye, “Systematic Study of the 87Sr Clock Transition in an Optical Lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref] [PubMed]

Isoya, Y.

H. Katori, T. Ido, Y. Isoya, and M. K-Gonokami, “Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[Crossref]

Jessen, P.S.

P.S. Jessen and I.H. Deutsch, “Optical lattices,” Adv. At. Mol. Opt. Phys. 37, 95–138 (1996).

Jochim, S.

Katori, H

T Ido and H Katori, “Recoil-Free spectroscopy of neutral Sr Atoms in the Lamb-Dicke regime,” Phys. Rev. Lett. 91, 053001 (2003).
[Crossref] [PubMed]

Katori, H.

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[Crossref] [PubMed]

H. Katori, T. Ido, Y. Isoya, and M. K-Gonokami, “Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[Crossref]

K-Gonokami, M.

H. Katori, T. Ido, Y. Isoya, and M. K-Gonokami, “Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[Crossref]

Komori, K

Y Takasu, K Maki, K Komori, T Takano, K Honda, M Kumakura, T Yabuzaki, and Y Takahashi, “Spin-singlet Bose-Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref] [PubMed]

Kowalski, F. V.

R.W.P. Drever, J.L Hall, F. V. Kowalski, J. Hough, G.M Ford, A.J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1993).
[Crossref]

Kumakura, M

Y Takasu, K Maki, K Komori, T Takano, K Honda, M Kumakura, T Yabuzaki, and Y Takahashi, “Spin-singlet Bose-Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref] [PubMed]

Lisdat, Ch

Ch Grain, T Nazarova, C Degenhardt, F Vogt, Ch Lisdat, E Tiemann, U Sterr, and F Riehle, “Feasibility of narrow-line optical dipole traps,” Eur. Phys. J. D. 42, 317–324 (2007).
[Crossref]

Ludlow, Andrew D.

Andrew D. Ludlow, Martin M. Boyd, Tanya Zelevinsky, Seth M. Foreman, Sebastian Blatt, Mark Notcutt, Tetsuya Ido, and Jun Ye, “Systematic Study of the 87Sr Clock Transition in an Optical Lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref] [PubMed]

Maki, K

Y Takasu, K Maki, K Komori, T Takano, K Honda, M Kumakura, T Yabuzaki, and Y Takahashi, “Spin-singlet Bose-Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref] [PubMed]

MaLeod, S. G.

P. F. Griffin, K. J. Weatherill, S. G. MaLeod, R. M. Potvliege, and C. S. Adams, “Spatially selective loading of an optical lattice by light-shift engineering using an auxiliary laser field,” New. J. Phys. 8, 1367–1377 (2006).

Mehlstäubler, T.E.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T.E. Mehlstäubler, E.M. Rasel, and W. Ertmer, “Doppler Cooling and Trapping on Forbidden Transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[Crossref] [PubMed]

Metcalf, H.

H. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, New York1999).
[Crossref]

Mirage, A.

L E.E. de Araujo, S. A. Carvalho, L. S. Cruz, A. A. Soares, A. Mirage, D. Pereira, and F. C. Cruz, “Optogalvanic detection of velocity-selective optical pumping in an open, cascade atomic medium,” Opt. Commun. 281, 626–632 (2008).
[Crossref]

Moritz, H.

Mosk, A.

Munley, A.J.

R.W.P. Drever, J.L Hall, F. V. Kowalski, J. Hough, G.M Ford, A.J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1993).
[Crossref]

Nazarova, T

Ch Grain, T Nazarova, C Degenhardt, F Vogt, Ch Lisdat, E Tiemann, U Sterr, and F Riehle, “Feasibility of narrow-line optical dipole traps,” Eur. Phys. J. D. 42, 317–324 (2007).
[Crossref]

Notcutt, Mark

Andrew D. Ludlow, Martin M. Boyd, Tanya Zelevinsky, Seth M. Foreman, Sebastian Blatt, Mark Notcutt, Tetsuya Ido, and Jun Ye, “Systematic Study of the 87Sr Clock Transition in an Optical Lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref] [PubMed]

Oates, C.W.

E. A. Curtis, C.W. Oates, and L. Holberg, “Quenched Narrow-Line Laser Cooling of 40Ca to Near the Photon Recoil Limit,” Phys. Rev. A 64, 031403 (2001).
[Crossref]

Ovchinnikov, Y.B.

R. Grimm, M. Weidemuller, and Y.B. Ovchinnikov, “Optical dipole trap for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

Pereira, D.

L E.E. de Araujo, S. A. Carvalho, L. S. Cruz, A. A. Soares, A. Mirage, D. Pereira, and F. C. Cruz, “Optogalvanic detection of velocity-selective optical pumping in an open, cascade atomic medium,” Opt. Commun. 281, 626–632 (2008).
[Crossref]

Potvliege, R. M.

P. F. Griffin, K. J. Weatherill, S. G. MaLeod, R. M. Potvliege, and C. S. Adams, “Spatially selective loading of an optical lattice by light-shift engineering using an auxiliary laser field,” New. J. Phys. 8, 1367–1377 (2006).

Rasel, E.M.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T.E. Mehlstäubler, E.M. Rasel, and W. Ertmer, “Doppler Cooling and Trapping on Forbidden Transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[Crossref] [PubMed]

Riehle, F

Ch Grain, T Nazarova, C Degenhardt, F Vogt, Ch Lisdat, E Tiemann, U Sterr, and F Riehle, “Feasibility of narrow-line optical dipole traps,” Eur. Phys. J. D. 42, 317–324 (2007).
[Crossref]

Riehle, F.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T.E. Mehlstäubler, E.M. Rasel, and W. Ertmer, “Doppler Cooling and Trapping on Forbidden Transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[Crossref] [PubMed]

Soares, A. A.

L E.E. de Araujo, S. A. Carvalho, L. S. Cruz, A. A. Soares, A. Mirage, D. Pereira, and F. C. Cruz, “Optogalvanic detection of velocity-selective optical pumping in an open, cascade atomic medium,” Opt. Commun. 281, 626–632 (2008).
[Crossref]

Sterr, U

Ch Grain, T Nazarova, C Degenhardt, F Vogt, Ch Lisdat, E Tiemann, U Sterr, and F Riehle, “Feasibility of narrow-line optical dipole traps,” Eur. Phys. J. D. 42, 317–324 (2007).
[Crossref]

Sterr, U.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T.E. Mehlstäubler, E.M. Rasel, and W. Ertmer, “Doppler Cooling and Trapping on Forbidden Transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[Crossref] [PubMed]

Takahashi, Y

Y Takasu, K Maki, K Komori, T Takano, K Honda, M Kumakura, T Yabuzaki, and Y Takahashi, “Spin-singlet Bose-Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref] [PubMed]

Takamoto, M.

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[Crossref] [PubMed]

Takano, T

Y Takasu, K Maki, K Komori, T Takano, K Honda, M Kumakura, T Yabuzaki, and Y Takahashi, “Spin-singlet Bose-Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref] [PubMed]

Takasu, Y

Y Takasu, K Maki, K Komori, T Takano, K Honda, M Kumakura, T Yabuzaki, and Y Takahashi, “Spin-singlet Bose-Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref] [PubMed]

Thomsen, J. W.

J. W. Dunn, J. W. Thomsen, C. H. Greene, and F. C. Cruz, “Coherent quantum engineering of free-space laser cooling,” Phys. Rev. A 76, 011401(R) (2007).
[Crossref]

Tiemann, E

Ch Grain, T Nazarova, C Degenhardt, F Vogt, Ch Lisdat, E Tiemann, U Sterr, and F Riehle, “Feasibility of narrow-line optical dipole traps,” Eur. Phys. J. D. 42, 317–324 (2007).
[Crossref]

van der Straten, P.

H. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, New York1999).
[Crossref]

Vogt, F

Ch Grain, T Nazarova, C Degenhardt, F Vogt, Ch Lisdat, E Tiemann, U Sterr, and F Riehle, “Feasibility of narrow-line optical dipole traps,” Eur. Phys. J. D. 42, 317–324 (2007).
[Crossref]

Ward, H.

R.W.P. Drever, J.L Hall, F. V. Kowalski, J. Hough, G.M Ford, A.J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1993).
[Crossref]

Weatherill, K. J.

P. F. Griffin, K. J. Weatherill, S. G. MaLeod, R. M. Potvliege, and C. S. Adams, “Spatially selective loading of an optical lattice by light-shift engineering using an auxiliary laser field,” New. J. Phys. 8, 1367–1377 (2006).

Weidemuller, M.

R. Grimm, M. Weidemuller, and Y.B. Ovchinnikov, “Optical dipole trap for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

Weidmüller, M.

Wilpers, G.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T.E. Mehlstäubler, E.M. Rasel, and W. Ertmer, “Doppler Cooling and Trapping on Forbidden Transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[Crossref] [PubMed]

Yabuzaki, T

Y Takasu, K Maki, K Komori, T Takano, K Honda, M Kumakura, T Yabuzaki, and Y Takahashi, “Spin-singlet Bose-Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref] [PubMed]

Ye, Jun

Andrew D. Ludlow, Martin M. Boyd, Tanya Zelevinsky, Seth M. Foreman, Sebastian Blatt, Mark Notcutt, Tetsuya Ido, and Jun Ye, “Systematic Study of the 87Sr Clock Transition in an Optical Lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref] [PubMed]

Zelevinsky, Tanya

Andrew D. Ludlow, Martin M. Boyd, Tanya Zelevinsky, Seth M. Foreman, Sebastian Blatt, Mark Notcutt, Tetsuya Ido, and Jun Ye, “Systematic Study of the 87Sr Clock Transition in an Optical Lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref] [PubMed]

Adv. At. Mol. Opt. Phys. (2)

R. Grimm, M. Weidemuller, and Y.B. Ovchinnikov, “Optical dipole trap for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

P.S. Jessen and I.H. Deutsch, “Optical lattices,” Adv. At. Mol. Opt. Phys. 37, 95–138 (1996).

Appl. Phys. B (1)

R.W.P. Drever, J.L Hall, F. V. Kowalski, J. Hough, G.M Ford, A.J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1993).
[Crossref]

Eur. Phys. J. D. (1)

Ch Grain, T Nazarova, C Degenhardt, F Vogt, Ch Lisdat, E Tiemann, U Sterr, and F Riehle, “Feasibility of narrow-line optical dipole traps,” Eur. Phys. J. D. 42, 317–324 (2007).
[Crossref]

Nature (1)

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

L E.E. de Araujo, S. A. Carvalho, L. S. Cruz, A. A. Soares, A. Mirage, D. Pereira, and F. C. Cruz, “Optogalvanic detection of velocity-selective optical pumping in an open, cascade atomic medium,” Opt. Commun. 281, 626–632 (2008).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (2)

E. A. Curtis, C.W. Oates, and L. Holberg, “Quenched Narrow-Line Laser Cooling of 40Ca to Near the Photon Recoil Limit,” Phys. Rev. A 64, 031403 (2001).
[Crossref]

J. W. Dunn, J. W. Thomsen, C. H. Greene, and F. C. Cruz, “Coherent quantum engineering of free-space laser cooling,” Phys. Rev. A 76, 011401(R) (2007).
[Crossref]

Phys. Rev. Lett. (5)

H. Katori, T. Ido, Y. Isoya, and M. K-Gonokami, “Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[Crossref]

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T.E. Mehlstäubler, E.M. Rasel, and W. Ertmer, “Doppler Cooling and Trapping on Forbidden Transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[Crossref] [PubMed]

Y Takasu, K Maki, K Komori, T Takano, K Honda, M Kumakura, T Yabuzaki, and Y Takahashi, “Spin-singlet Bose-Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref] [PubMed]

T Ido and H Katori, “Recoil-Free spectroscopy of neutral Sr Atoms in the Lamb-Dicke regime,” Phys. Rev. Lett. 91, 053001 (2003).
[Crossref] [PubMed]

Andrew D. Ludlow, Martin M. Boyd, Tanya Zelevinsky, Seth M. Foreman, Sebastian Blatt, Mark Notcutt, Tetsuya Ido, and Jun Ye, “Systematic Study of the 87Sr Clock Transition in an Optical Lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref] [PubMed]

Other (3)

Reference table of transitions: http://cfa-www.harvard.edu/amp/ampdata/kurucz23/sekur.html

P. F. Griffin, K. J. Weatherill, S. G. MaLeod, R. M. Potvliege, and C. S. Adams, “Spatially selective loading of an optical lattice by light-shift engineering using an auxiliary laser field,” New. J. Phys. 8, 1367–1377 (2006).

H. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, New York1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Left: Level diagram of 40Ca. The AC-Stark shifts (in MHz, eq. 4; given in blue for the respective levels) at the center of a 1.5 mKelvin-deep trap produced by a laser at 532 nm, with power of 1000 W, waist size of 100 µm (Table 1), and indicated polarizations. Right: AC-Stark shifts versus wavelength of a second laser, in the presence of a weaker trap laser at 532 nm that produces a potential depth of 50 µKelvin (see text). At 613 nm (circle) this second red laser cancels the Stark shift of the 532 nm laser for the calcium intercombination transition (same polarization was assumed for both lasers).

Fig. 2.
Fig. 2.

Left: Schematic diagram of the Fabry-Perot cavity for a deep 532-nm lattice. The cavity is locked to the laser by the Pound-Drever-Hall technique [16]. EOM: electro-optical modulator (resonant at 12 MHz); PD: photodetector, PBS: polarizing beamsplitter; λ/4: quarter-wave plate; DBM: double balanced mixer; RF: RF oscillator at 12 MHz; PZT: piezo transducer. Right: Intracavity power, without the viewports, as function of input power at 532 nm. Inset: cavity resonance with FM sidebands (black), and corresponding Pound-Drever-Hall error signal (red).

Tables (1)

Tables Icon

Table 1. Potential depths (in mK), radial and axial frequencies, and residual scattering rates from the 1S0-1P1 transition of calcium atoms (at 423 nm) inside a 1D optical lattice produced by a 532 nm laser, for various waist sizes and intracavity powers.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

U ( x , y , z ) = α 2 E ( x , y , z ) 2 = 4 U 0 1 + ( z z r ) 2 exp [ 2 ( x 2 + y 2 ) ω ( z ) 2 ] cos 2 kz
G = P C P I = T 1 2 ( 1 T ) ( 1 L ) + ( 1 T ) ( 1 L )
Γ SC = 3 π c 2 I 2 ћ ω at 3 ( ω L ω at ) 3 ( Γ ω at ω L + Γ ω at + ω L ) 2
Δ ν i = 3 P 16 π 4 hc 2 ω 0 2 k , m k λ ik 4 λ 2 ( λ 2 λ ik 2 ) A ki ( J i 1 J k m i p m k )

Metrics