Abstract

We performed an absolute frequency measurement of an acetylene stabilized laser utilizing a femtosecond injection locking technique that can select one component among the fiber laser comb modes. The injection locking scheme has all the fiber configurations. Femtosecond comb lines of 250 MHz spacing based on the fiber femtosecond laser were used for injection locking of a distributed feedback (DFB) laser operating at 1542 nm as a frequency reference. The comb injected DFB laser serves as a selection filter of optical comb modes and an amplifier for amplification of the selected mode. The DFB laser injection locked to the desired comb mode was used to evaluate the frequency stability and absolute frequency measurement of an acetylene stabilized laser. The frequency stability of the acetylene stabilized laser was measured to be 1.1×10-12 for a 1 s averaging time, improving to 6.9×10-14 after 512 s. The absolute frequency of the laser stabilized on the P(16) transition of 13C2H2 was measured to be 194 369 569 385.7 kHz.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  2. Th. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature. 416, 233-237 (2002).
    [CrossRef] [PubMed]
  3. S. T. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003).
    [CrossRef]
  4. H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110-1-181110-3 (2006).
    [CrossRef]
  5. S. E. Park, E. B. Kim, Y. H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, "Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb," Opt. Lett. 31, 3594-3596 (2006).
    [CrossRef] [PubMed]
  6. H. S. Moon, S. E. Park, and E. B. Kim "Coherent multi-frequency optical source generation using a femto- second laser and its application for coherent population trapping," Opt. Express. 15, 3265-3270 (2007).
    [CrossRef] [PubMed]
  7. T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, "Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms," Phys. Rev. Lett. 94, 050801 (2005).
    [CrossRef] [PubMed]
  8. R. Santra, E. Arimondo, T. Ldo, C. Greene, and J. Ye, "High-accuracy optical clock via three-level coherence in neural bosonic 88Sr," Phys. Rev. Lett. 94, 173002 (2005).
    [CrossRef] [PubMed]
  9. W-K. Lee, D-S. Yee, and H. S. Suh, "Direct frequency counting with enhanced beat signal-to-noise ratio for absolute frequency measurement of a He-Ne/I2 laser at 633," Appl. Opt. 46, 930-934 (2006).
    [CrossRef]
  10. F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T R. Schibli, H. Matsumoto and K. Nakagawa, "Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm," Opt. Lett. 28, 2324-2326 (2003).
    [CrossRef] [PubMed]
  11. J. Jiang, A. Onae, H. Matsumoto, and F.-L. Hong, "Frequency measurement of acetylene-stabilized lasers using a femtosecond optical comb without carrier-envelope offset frequency control," Opt. Express. 13, 1958-1965 (2005).
    [CrossRef] [PubMed]
  12. R. Felder, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003)," Metrologia. 42, 323-325 (2005).
    [CrossRef]
  13. M. Tateda, T. Horiguchi, M. Tokuda, and N. Uchida, "Optical loss measurement in graded-index fiber using a dummy fiber," Appl. Opt. 18, 3272-3275 (1979).
    [CrossRef] [PubMed]

2007

H. S. Moon, S. E. Park, and E. B. Kim "Coherent multi-frequency optical source generation using a femto- second laser and its application for coherent population trapping," Opt. Express. 15, 3265-3270 (2007).
[CrossRef] [PubMed]

2006

2005

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, "Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms," Phys. Rev. Lett. 94, 050801 (2005).
[CrossRef] [PubMed]

R. Santra, E. Arimondo, T. Ldo, C. Greene, and J. Ye, "High-accuracy optical clock via three-level coherence in neural bosonic 88Sr," Phys. Rev. Lett. 94, 173002 (2005).
[CrossRef] [PubMed]

J. Jiang, A. Onae, H. Matsumoto, and F.-L. Hong, "Frequency measurement of acetylene-stabilized lasers using a femtosecond optical comb without carrier-envelope offset frequency control," Opt. Express. 13, 1958-1965 (2005).
[CrossRef] [PubMed]

R. Felder, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003)," Metrologia. 42, 323-325 (2005).
[CrossRef]

2003

2002

Th. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature. 416, 233-237 (2002).
[CrossRef] [PubMed]

2000

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

1979

Arimondo, E.

R. Santra, E. Arimondo, T. Ldo, C. Greene, and J. Ye, "High-accuracy optical clock via three-level coherence in neural bosonic 88Sr," Phys. Rev. Lett. 94, 173002 (2005).
[CrossRef] [PubMed]

Cramer, C.

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, "Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms," Phys. Rev. Lett. 94, 050801 (2005).
[CrossRef] [PubMed]

Cundiff, S. T.

S. T. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Felder, R.

R. Felder, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003)," Metrologia. 42, 323-325 (2005).
[CrossRef]

Fortson, E. N.

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, "Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms," Phys. Rev. Lett. 94, 050801 (2005).
[CrossRef] [PubMed]

Greene, C.

R. Santra, E. Arimondo, T. Ldo, C. Greene, and J. Ye, "High-accuracy optical clock via three-level coherence in neural bosonic 88Sr," Phys. Rev. Lett. 94, 173002 (2005).
[CrossRef] [PubMed]

Guo, R.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Hansch, T. W.

Th. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature. 416, 233-237 (2002).
[CrossRef] [PubMed]

Holzwarth, R.

Th. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature. 416, 233-237 (2002).
[CrossRef] [PubMed]

Hong, F.-L.

J. Jiang, A. Onae, H. Matsumoto, and F.-L. Hong, "Frequency measurement of acetylene-stabilized lasers using a femtosecond optical comb without carrier-envelope offset frequency control," Opt. Express. 13, 1958-1965 (2005).
[CrossRef] [PubMed]

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T R. Schibli, H. Matsumoto and K. Nakagawa, "Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm," Opt. Lett. 28, 2324-2326 (2003).
[CrossRef] [PubMed]

Hong, T.

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, "Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms," Phys. Rev. Lett. 94, 050801 (2005).
[CrossRef] [PubMed]

Horiguchi, T.

Inaba, H.

Jiang, J.

J. Jiang, A. Onae, H. Matsumoto, and F.-L. Hong, "Frequency measurement of acetylene-stabilized lasers using a femtosecond optical comb without carrier-envelope offset frequency control," Opt. Express. 13, 1958-1965 (2005).
[CrossRef] [PubMed]

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T R. Schibli, H. Matsumoto and K. Nakagawa, "Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm," Opt. Lett. 28, 2324-2326 (2003).
[CrossRef] [PubMed]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Kim, E. B.

H. S. Moon, S. E. Park, and E. B. Kim "Coherent multi-frequency optical source generation using a femto- second laser and its application for coherent population trapping," Opt. Express. 15, 3265-3270 (2007).
[CrossRef] [PubMed]

S. E. Park, E. B. Kim, Y. H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, "Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb," Opt. Lett. 31, 3594-3596 (2006).
[CrossRef] [PubMed]

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110-1-181110-3 (2006).
[CrossRef]

Kwon, T. Y.

Ldo, T.

R. Santra, E. Arimondo, T. Ldo, C. Greene, and J. Ye, "High-accuracy optical clock via three-level coherence in neural bosonic 88Sr," Phys. Rev. Lett. 94, 173002 (2005).
[CrossRef] [PubMed]

Lee, W-K.

Matsumoto, H.

J. Jiang, A. Onae, H. Matsumoto, and F.-L. Hong, "Frequency measurement of acetylene-stabilized lasers using a femtosecond optical comb without carrier-envelope offset frequency control," Opt. Express. 13, 1958-1965 (2005).
[CrossRef] [PubMed]

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T R. Schibli, H. Matsumoto and K. Nakagawa, "Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm," Opt. Lett. 28, 2324-2326 (2003).
[CrossRef] [PubMed]

Minoshima, K.

Moon, H. S.

H. S. Moon, S. E. Park, and E. B. Kim "Coherent multi-frequency optical source generation using a femto- second laser and its application for coherent population trapping," Opt. Express. 15, 3265-3270 (2007).
[CrossRef] [PubMed]

S. E. Park, E. B. Kim, Y. H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, "Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb," Opt. Lett. 31, 3594-3596 (2006).
[CrossRef] [PubMed]

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110-1-181110-3 (2006).
[CrossRef]

Nagourney, W.

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, "Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms," Phys. Rev. Lett. 94, 050801 (2005).
[CrossRef] [PubMed]

Nakagawa, K.

Onae, A.

J. Jiang, A. Onae, H. Matsumoto, and F.-L. Hong, "Frequency measurement of acetylene-stabilized lasers using a femtosecond optical comb without carrier-envelope offset frequency control," Opt. Express. 13, 1958-1965 (2005).
[CrossRef] [PubMed]

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T R. Schibli, H. Matsumoto and K. Nakagawa, "Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm," Opt. Lett. 28, 2324-2326 (2003).
[CrossRef] [PubMed]

Park, C. Y.

S. E. Park, E. B. Kim, Y. H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, "Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb," Opt. Lett. 31, 3594-3596 (2006).
[CrossRef] [PubMed]

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110-1-181110-3 (2006).
[CrossRef]

Park, S. E.

H. S. Moon, S. E. Park, and E. B. Kim "Coherent multi-frequency optical source generation using a femto- second laser and its application for coherent population trapping," Opt. Express. 15, 3265-3270 (2007).
[CrossRef] [PubMed]

S. E. Park, E. B. Kim, Y. H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, "Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb," Opt. Lett. 31, 3594-3596 (2006).
[CrossRef] [PubMed]

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110-1-181110-3 (2006).
[CrossRef]

Park, Y. H.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Santra, R.

R. Santra, E. Arimondo, T. Ldo, C. Greene, and J. Ye, "High-accuracy optical clock via three-level coherence in neural bosonic 88Sr," Phys. Rev. Lett. 94, 173002 (2005).
[CrossRef] [PubMed]

Schibli, T R.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Suh, H. S.

Tateda, M.

Tokuda, M.

Uchida, N.

Udem, Th.

Th. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature. 416, 233-237 (2002).
[CrossRef] [PubMed]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Ye, J.

R. Santra, E. Arimondo, T. Ldo, C. Greene, and J. Ye, "High-accuracy optical clock via three-level coherence in neural bosonic 88Sr," Phys. Rev. Lett. 94, 173002 (2005).
[CrossRef] [PubMed]

S. T. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003).
[CrossRef]

Yee, D. S.

Yee, D-S.

Yoon, T. H.

Appl. Opt.

Metrologia.

R. Felder, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003)," Metrologia. 42, 323-325 (2005).
[CrossRef]

Nature.

Th. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature. 416, 233-237 (2002).
[CrossRef] [PubMed]

Opt. Express.

H. S. Moon, S. E. Park, and E. B. Kim "Coherent multi-frequency optical source generation using a femto- second laser and its application for coherent population trapping," Opt. Express. 15, 3265-3270 (2007).
[CrossRef] [PubMed]

J. Jiang, A. Onae, H. Matsumoto, and F.-L. Hong, "Frequency measurement of acetylene-stabilized lasers using a femtosecond optical comb without carrier-envelope offset frequency control," Opt. Express. 13, 1958-1965 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, "Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms," Phys. Rev. Lett. 94, 050801 (2005).
[CrossRef] [PubMed]

R. Santra, E. Arimondo, T. Ldo, C. Greene, and J. Ye, "High-accuracy optical clock via three-level coherence in neural bosonic 88Sr," Phys. Rev. Lett. 94, 173002 (2005).
[CrossRef] [PubMed]

Rev. Mod. Phys.

S. T. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003).
[CrossRef]

Science

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Other

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110-1-181110-3 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Configuration of the experimental setup for injection locking of DFB lasers. The optical frequency comb generator (OFCG) was used for the injection seeding. VAT : variable attenuator, OC: output coupler, PM : power meter, PC : polarization controller, AWG, array waveguide grating, PD : photo detector, OSA : optical spectrum analyzer, WM : wavelength meter, FC: frequency counter, EAS : electrical spectrum analyzer

Fig. 2.
Fig. 2.

The output spectrum of the amplified fiber laser oscillator for injection locking of the DFB laser. The insert is the transmittance spectra of the AWG. The channel spacing and FWHM are 100 GHz and 50 GHz, respectively.

Fig. 3.
Fig. 3.

Optical spectrum of DFB laser before and after injection locking centered at 1542.38 nm. Line (1) indicates the transmittance spectrum of the AWG. Lines (2) and (3) indicate that without injection locking and with injection locking of the DFB laser, respectively

Fig. 4.
Fig. 4.

(a). The RF spectrum between the comb and the DFB laser before injection locking. The comb spacing is 250 MHz, and the beatings of 50 MHz spacing are harmonics and subharmonics between the combs and DFB laser. (b). The beat frequency between the acetylene stabilized laser and the injection locked DFB laser

Fig. 5.
Fig. 5.

The polarization dependent power in the fiber according to the elapsed time before and after the optimization of injection locking scheme. Lines (1) and (3) indicate the variation of the polarization dependent power before and after optimization of the fiber environment, respectively. Line (2) indicates the polarization dependence of the comb itself.

Fig. 6.
Fig. 6.

The Allan deviation of the measured beat frequency between the acetylene stabilized laser and the comb injection locked DFB laser. The right-hand inset shows the beat frequency between this two lasers measured by a frequency counter. The left-hand inset shows the tracking capability of two independently injection-locked DFB lasers

Metrics