Abstract

In this paper, we propose a new analysis model for photopolymer recording processes that calculate the two-dimensional refractive index distribution of multiplexed holograms. For the simulation of the photopolymer medium, two different process must be considered for the determination of the refractive index, i.e. variations of the monomer and polymer distribution in the medium during exposure and after exposure. There variations are related to the polymerization reaction (conversion of the monomer to polymer, propagation of the living chains and termination), as also the diffusion of the monomer related to the concentration gradients taking place during inhomogeneous irradiation. By evaluating the refractive index pattern on each layer, the diffraction beams from the multiplexed hologram can be read out by beam propagation method (BPM). This is the first paper to determine the diffraction beam from a multiplexed hologram in a simulated photopolymer medium process. We analyze the time response of the multiplexed hologram recording processes in the photopolymer, and estimate the degradation of diffraction efficiency with multiplexed recording. This work can greatly contribute to understanding the process of hologram recording.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at 405 nm," Proc. SPIE 5380, 283-288 (2004).
    [CrossRef]
  2. D. A. Waldman, H. Y. Li, and M. G. Horner, "Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material," J. Imaging Sci. Technol. 41, 497-514 (1997).
  3. N. Hayashida, A. Kosuda, and J. Yoshinari, "A new organic/ in organic-hybrid Photoreactive material for holographic data storage media," Tech. Dig. ISOM 200744-45, (2007).
  4. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage, Springer Series in Optical Sciences (Springer-Verlag, 2000)
  5. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, "High-transfer-rate high-capacity holographic disk data-storage system," Appl. Opt. 43, 4902-4914 (2004).
    [CrossRef] [PubMed]
  6. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, "Improved performance in coaxial holographic data recording," Opt. Express 15, 16196 (2007).
    [CrossRef] [PubMed]
  7. L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair. M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
    [CrossRef]
  8. M. Toishi, T. Tanaka, and K. Watanabe," Experimental analysis in recording transmission and reflection holograms at the same time and location," Appl. Opt. 45, 6367-6373 (2006).
    [CrossRef] [PubMed]
  9. A. Satou, T. Teranichi, M. Kawabata, and E. Hisajima, "Photopolymer media design for collinear holographic data storage," Proc. SPIE 5380, 576-583(2004).
    [CrossRef]
  10. M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Improvement in temperature tolerance of holographic data storage using wavelength tunable laser," Jpn. J. Appl. Phys. 45, 1297-1304 (2006).
    [CrossRef]
  11. M. Toishi, T. Tanaka, and K. Watanabe "Analysis of temperature changes effects on hologram recording and its compensation method" Opt. Rev. 15, 11-18 (2008).
    [CrossRef]
  12. C. Neipp, A. Beléndez, J. Sheridan, J. Kelly, F. O'Neill, S. Gallego, M. Ortuño, and I. Pascual, "Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity," Opt. Express 11, 1876-1886 (2003).
    [CrossRef] [PubMed]
  13. C. Neipp, S. Gallego, M. Ortuño, A. Márquez, M. L. Alvarez, A. Beléndez, and I. Pascual, "First-harmonic diffusion-based model applied to a polyvinyl-alcohol-acrylamide-based photopolymer," J. Opt. Soc. Am. B 20, 2052-2060 (2003).
    [CrossRef]
  14. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, "3 Dimensional analysis of holographic photopolymers based memories," Opt. Express 13, 3543- 3557 (2005).
    [CrossRef] [PubMed]
  15. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, E. Fernández, and I. Pascual, "3-dimensional characterization of thick grating formation in PVA/AA based photopolymer," Opt. Express 14, 5121- 5128 (2006).
    [CrossRef] [PubMed]
  16. M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku. "Analysis of Photopolymer Media of Holographic Data Storage using non-local polymerization driven diffusion model," Jpn. J. Appl. Phys. 46, 3438-3447 (2007).
    [CrossRef]
  17. T. P. Kurzweg, Ph.D. Thesis, University of Pittsburgh, (1997).
  18. S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, "Simulation of Holographic Data Storage for the Optical Collinear System," Jpn. J. Appl. Phys. 45, 1246-1252 (2006).
    [CrossRef]
  19. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, "Effects of absorption and inhibition during grating formation in photopolymer materials," J. Opt. Soc. Am. B 23, 2079-2088 (2006).
    [CrossRef]
  20. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

2008

M. Toishi, T. Tanaka, and K. Watanabe "Analysis of temperature changes effects on hologram recording and its compensation method" Opt. Rev. 15, 11-18 (2008).
[CrossRef]

2007

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku. "Analysis of Photopolymer Media of Holographic Data Storage using non-local polymerization driven diffusion model," Jpn. J. Appl. Phys. 46, 3438-3447 (2007).
[CrossRef]

N. Hayashida, A. Kosuda, and J. Yoshinari, "A new organic/ in organic-hybrid Photoreactive material for holographic data storage media," Tech. Dig. ISOM 200744-45, (2007).

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, "Improved performance in coaxial holographic data recording," Opt. Express 15, 16196 (2007).
[CrossRef] [PubMed]

2006

2005

2004

S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, "High-transfer-rate high-capacity holographic disk data-storage system," Appl. Opt. 43, 4902-4914 (2004).
[CrossRef] [PubMed]

A. Satou, T. Teranichi, M. Kawabata, and E. Hisajima, "Photopolymer media design for collinear holographic data storage," Proc. SPIE 5380, 576-583(2004).
[CrossRef]

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at 405 nm," Proc. SPIE 5380, 283-288 (2004).
[CrossRef]

2003

1998

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair. M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

1997

D. A. Waldman, H. Y. Li, and M. G. Horner, "Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material," J. Imaging Sci. Technol. 41, 497-514 (1997).

1969

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Alvarez, M. L.

Askham, F.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at 405 nm," Proc. SPIE 5380, 283-288 (2004).
[CrossRef]

Bair, H.

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair. M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Beal, D.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at 405 nm," Proc. SPIE 5380, 283-288 (2004).
[CrossRef]

Beléndez, A.

Betsuyaku, K.

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku. "Analysis of Photopolymer Media of Holographic Data Storage using non-local polymerization driven diffusion model," Jpn. J. Appl. Phys. 46, 3438-3447 (2007).
[CrossRef]

Bjornson, E.

Close, C. E.

Cole, M.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at 405 nm," Proc. SPIE 5380, 283-288 (2004).
[CrossRef]

Dhar, L.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at 405 nm," Proc. SPIE 5380, 283-288 (2004).
[CrossRef]

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair. M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Fernández, E.

Fukumoto, A.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, "Improved performance in coaxial holographic data recording," Opt. Express 15, 16196 (2007).
[CrossRef] [PubMed]

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, "Simulation of Holographic Data Storage for the Optical Collinear System," Jpn. J. Appl. Phys. 45, 1246-1252 (2006).
[CrossRef]

Gallego, S.

Gleeson, M. R.

Hara, M.

Hayashida, N.

N. Hayashida, A. Kosuda, and J. Yoshinari, "A new organic/ in organic-hybrid Photoreactive material for holographic data storage media," Tech. Dig. ISOM 200744-45, (2007).

Hesselink, L.

Hill, A.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at 405 nm," Proc. SPIE 5380, 283-288 (2004).
[CrossRef]

Hirooka, K.

Hisajima, E.

A. Satou, T. Teranichi, M. Kawabata, and E. Hisajima, "Photopolymer media design for collinear holographic data storage," Proc. SPIE 5380, 576-583(2004).
[CrossRef]

Horner, M. G.

D. A. Waldman, H. Y. Li, and M. G. Horner, "Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material," J. Imaging Sci. Technol. 41, 497-514 (1997).

Ihas, B.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at 405 nm," Proc. SPIE 5380, 283-288 (2004).
[CrossRef]

Ishioka, K.

Kawabata, M.

A. Satou, T. Teranichi, M. Kawabata, and E. Hisajima, "Photopolymer media design for collinear holographic data storage," Proc. SPIE 5380, 576-583(2004).
[CrossRef]

Kelly, J.

Kelly, J. V.

Kogelnik, H.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Kosuda, A.

N. Hayashida, A. Kosuda, and J. Yoshinari, "A new organic/ in organic-hybrid Photoreactive material for holographic data storage media," Tech. Dig. ISOM 200744-45, (2007).

Kwan, D.

Lambourdiere, S. R.

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, "Simulation of Holographic Data Storage for the Optical Collinear System," Jpn. J. Appl. Phys. 45, 1246-1252 (2006).
[CrossRef]

Li, H. Y.

D. A. Waldman, H. Y. Li, and M. G. Horner, "Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material," J. Imaging Sci. Technol. 41, 497-514 (1997).

Márquez, A.

Michaels, D.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at 405 nm," Proc. SPIE 5380, 283-288 (2004).
[CrossRef]

Neipp, C.

Okas, R.

O'Neill, F.

O'Neill, F. T.

Orlov, S. S.

Ortuño, M.

Pascual, I.

Phillips, W.

Quirin, S.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at 405 nm," Proc. SPIE 5380, 283-288 (2004).
[CrossRef]

Satou, A.

A. Satou, T. Teranichi, M. Kawabata, and E. Hisajima, "Photopolymer media design for collinear holographic data storage," Proc. SPIE 5380, 576-583(2004).
[CrossRef]

Schnoes, M.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at 405 nm," Proc. SPIE 5380, 283-288 (2004).
[CrossRef]

Schonoes, M. G.

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair. M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Setthachayanon, S.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at 405 nm," Proc. SPIE 5380, 283-288 (2004).
[CrossRef]

Sheridan, J.

Sheridan, J. T.

Snyder, R.

Sugiki, M.

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Improvement in temperature tolerance of holographic data storage using wavelength tunable laser," Jpn. J. Appl. Phys. 45, 1297-1304 (2006).
[CrossRef]

Sundaram, P.

Takashima, Y.

Tanaka, K.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, "Improved performance in coaxial holographic data recording," Opt. Express 15, 16196 (2007).
[CrossRef] [PubMed]

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, "Simulation of Holographic Data Storage for the Optical Collinear System," Jpn. J. Appl. Phys. 45, 1246-1252 (2006).
[CrossRef]

Tanaka, T.

M. Toishi, T. Tanaka, and K. Watanabe "Analysis of temperature changes effects on hologram recording and its compensation method" Opt. Rev. 15, 11-18 (2008).
[CrossRef]

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku. "Analysis of Photopolymer Media of Holographic Data Storage using non-local polymerization driven diffusion model," Jpn. J. Appl. Phys. 46, 3438-3447 (2007).
[CrossRef]

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Improvement in temperature tolerance of holographic data storage using wavelength tunable laser," Jpn. J. Appl. Phys. 45, 1297-1304 (2006).
[CrossRef]

M. Toishi, T. Tanaka, and K. Watanabe," Experimental analysis in recording transmission and reflection holograms at the same time and location," Appl. Opt. 45, 6367-6373 (2006).
[CrossRef] [PubMed]

Teranichi, T.

A. Satou, T. Teranichi, M. Kawabata, and E. Hisajima, "Photopolymer media design for collinear holographic data storage," Proc. SPIE 5380, 576-583(2004).
[CrossRef]

Toishi, M.

M. Toishi, T. Tanaka, and K. Watanabe "Analysis of temperature changes effects on hologram recording and its compensation method" Opt. Rev. 15, 11-18 (2008).
[CrossRef]

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku. "Analysis of Photopolymer Media of Holographic Data Storage using non-local polymerization driven diffusion model," Jpn. J. Appl. Phys. 46, 3438-3447 (2007).
[CrossRef]

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Improvement in temperature tolerance of holographic data storage using wavelength tunable laser," Jpn. J. Appl. Phys. 45, 1297-1304 (2006).
[CrossRef]

M. Toishi, T. Tanaka, and K. Watanabe," Experimental analysis in recording transmission and reflection holograms at the same time and location," Appl. Opt. 45, 6367-6373 (2006).
[CrossRef] [PubMed]

Tokuyama, K.

Trentler, T.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at 405 nm," Proc. SPIE 5380, 283-288 (2004).
[CrossRef]

Waldman, D. A.

D. A. Waldman, H. Y. Li, and M. G. Horner, "Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material," J. Imaging Sci. Technol. 41, 497-514 (1997).

Wang, P.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at 405 nm," Proc. SPIE 5380, 283-288 (2004).
[CrossRef]

Watanabe, K.

M. Toishi, T. Tanaka, and K. Watanabe "Analysis of temperature changes effects on hologram recording and its compensation method" Opt. Rev. 15, 11-18 (2008).
[CrossRef]

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, "Improved performance in coaxial holographic data recording," Opt. Express 15, 16196 (2007).
[CrossRef] [PubMed]

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku. "Analysis of Photopolymer Media of Holographic Data Storage using non-local polymerization driven diffusion model," Jpn. J. Appl. Phys. 46, 3438-3447 (2007).
[CrossRef]

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, "Simulation of Holographic Data Storage for the Optical Collinear System," Jpn. J. Appl. Phys. 45, 1246-1252 (2006).
[CrossRef]

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Improvement in temperature tolerance of holographic data storage using wavelength tunable laser," Jpn. J. Appl. Phys. 45, 1297-1304 (2006).
[CrossRef]

M. Toishi, T. Tanaka, and K. Watanabe," Experimental analysis in recording transmission and reflection holograms at the same time and location," Appl. Opt. 45, 6367-6373 (2006).
[CrossRef] [PubMed]

Wilson, W.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at 405 nm," Proc. SPIE 5380, 283-288 (2004).
[CrossRef]

Wysocki, T. L.

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair. M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Yoshinari, J.

N. Hayashida, A. Kosuda, and J. Yoshinari, "A new organic/ in organic-hybrid Photoreactive material for holographic data storage media," Tech. Dig. ISOM 200744-45, (2007).

Appl. Opt.

Appl. Phys. Lett.

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair. M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

J. Imaging Sci. Technol.

D. A. Waldman, H. Y. Li, and M. G. Horner, "Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material," J. Imaging Sci. Technol. 41, 497-514 (1997).

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, "Simulation of Holographic Data Storage for the Optical Collinear System," Jpn. J. Appl. Phys. 45, 1246-1252 (2006).
[CrossRef]

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Improvement in temperature tolerance of holographic data storage using wavelength tunable laser," Jpn. J. Appl. Phys. 45, 1297-1304 (2006).
[CrossRef]

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku. "Analysis of Photopolymer Media of Holographic Data Storage using non-local polymerization driven diffusion model," Jpn. J. Appl. Phys. 46, 3438-3447 (2007).
[CrossRef]

Opt. Express

Opt. Rev.

M. Toishi, T. Tanaka, and K. Watanabe "Analysis of temperature changes effects on hologram recording and its compensation method" Opt. Rev. 15, 11-18 (2008).
[CrossRef]

Proc. SPIE

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at 405 nm," Proc. SPIE 5380, 283-288 (2004).
[CrossRef]

A. Satou, T. Teranichi, M. Kawabata, and E. Hisajima, "Photopolymer media design for collinear holographic data storage," Proc. SPIE 5380, 576-583(2004).
[CrossRef]

Tech. Dig. ISOM

N. Hayashida, A. Kosuda, and J. Yoshinari, "A new organic/ in organic-hybrid Photoreactive material for holographic data storage media," Tech. Dig. ISOM 200744-45, (2007).

Other

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage, Springer Series in Optical Sciences (Springer-Verlag, 2000)

T. P. Kurzweg, Ph.D. Thesis, University of Pittsburgh, (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Conceptual diagram of the hologram recording process in a photopolymer medium. The upper figure is the interference pattern induced by the signal and reference beam, and the initial condition of the medium. Because the initiator and binder are not described, polymerized monomers have been excluded in this figure. The middle figure represents the medium after beam illumination. Polymerization and monomer diffusion are simultaneously induced by beam illumination. The bottom figure shows the refractive index modulation after monomer diffusion.

Fig. 2.
Fig. 2.

Diagram of the time scheme of the recording process when n holograms are recorded. The recording process consists of three steps, namely pre-exposure, multiplex recording, and post-exposure. N-th multiplexed hologram recordings are conducted simultaneously. Each recording process consists of polymerization during and after exposure, a termination process, and monomer diffusion. This diffusion process continues until the post-cure process. The time interval between each beam exposure is set. After post-cure, we perform the readout process to calculate the diffraction efficiency.

Fig. 3.
Fig. 3.

(a) Distribution of the refractive index inside the medium. We calculated the pattern over 200 periods of the hologram; however, this figure is cut and expanded over a couple of periods of the hologram pattern. (b) Angular selectivity of the diffraction efficiency at each instant. Each dot and solid line corresponds to experimental and theoretical results of this simulation, which are very similar. The distribution of angular selectivity is almost a sinc function, and the diffraction efficiency is nearly saturated at 120[s].

Fig. 4.
Fig. 4.

(a) Time response of polymerized monomer density as a function of each initial oxygen density. Signal and reference beams are illuminated from 5 to 15[s] without preexposure. (b) Diffraction efficiency as a function of the variance sigma, which is log scale. The variance sigma is obtained from Eq. 6. The polymer reaction duration depends on the polymer chain length and spread of polymerization because of the beam illumination.

Fig. 5.
Fig. 5.

(a) Diffraction efficiency and angular shift in terms of medium thickness. The square and triangular dots represent the diffraction efficiency and angular selectivity, respectively. (b) The square and circular dots represent the diffraction efficiency and noise rate at the first null for each transmissivity, respectively

Fig. 6.
Fig. 6.

Refractive index distribution inside the medium (a) for five holograms recorded; and (b) for 20 holograms recorded. To calculate the diffraction efficiency we consider a wider area of the medium surface. These figures show patterns extended over a few periods of the refractive index distribution.

Fig. 7.
Fig. 7.

Diffraction efficiency as a function of each readout angle of reference beam.

Fig. 8.
Fig. 8.

(a) Conceptual diagram shown that decrease of DE of 1st-recorded hologram with recording other holograms (b),(c) Decrease of DE of the first recorded hologram, as a function of the number of other recorded holograms. Experimental data and numerical analysis are shown as dotted and solid lines, respectively. The right figure is extended over 1–30 of multiplexed number of hologram

Tables (1)

Tables Icon

Table 1. Table 1. Input and estimated parameters. We determined the diffraction efficiency by varying the readout angle at each time interval after recording, and performed an identical analysis on the simulation using the parameters listed in Table I.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

d Φ A _ 1 x t dt = k i I 0 ( x ) k t Φ A _ 1 2 x t ,
Φ A _ 1 x t = k i 1 2 tanh { ( k i I 0 ) 1 2 ( k t 1 2 ) t } k t 1 2 .
d Φ A _ 2 x t dt = k t Φ A _ 2 2 x t .
Φ A _ 2 x t = 1 k t { k t t e ( k t k i ) 1 2 tanh [ ( k i k t I 0 ) 1 2 t ] } .
Φ m x t t = x [ D ( x , t ) · Φ m ( x , t ) x ] k p Θ [ ξ ] G ( x , x ) Φ m ( x , x ) Φ A _ a ( x , t ) d x ,
G ( x , x ) = 1 2 π σ exp [ ( x x ) 2 2 σ ] ,
Θ [ ξ ] = 0 ( ξ < 0 )
= exp [ i d ρ ( t ) ] ( ξ 0 ) ,
ξ = Φ m i d ρ ( t ) ,
ρ ( t ) = ρ 0 exp [ k I 0 t ] ,
n _ medium x t = C p φ p x 0 + C m φ m x 0 + C b φ b x 0 ,
I x z = I 0 ( x ) exp ( α z ) ,
U 1 x d = U 1 x 0 exp [ i 2 π dn ( x ) λ ] exp ( 2 π i ν x x ) dxH 1 ( ν x ; d ) exp ( 2 π i ν x x ) d ν x ,
H 1 ( ν x ; z ) = exp [ ( 2 π k 1 2 k 0 ) ( 1 λ 0 2 ν 0 x 2 ) 1 2 z ] exp [ 2 π i n 1 ( 1 λ 0 2 ν 0 x 2 ) 1 2 z ] ,

Metrics