Abstract

We report and investigate on a highly efficient technique to generate broadband cascaded four-wave mixing (FWM) products. It consists of launching two strong pump waves near the zero-dispersion wavelength of very short (of order of few meters) optical fibers. Simulations based on split step fourier method (SSFM) and experimental data demonstrate the efficiency of this approach. Multiple FWM products have been investigated by using conventional fibers and ultra-flattened dispersion photonic crystal fibers. Measured results present bandwidths of 300 nm with up to 118 FWM products. We have also demonstrated a flat bandwidth of 110 nm covering the C and L bands, with a small variation of only 1.2 dB between the powers of FWM products, achieved by using highly nonlinear fibers (HNLFs). The use of dispersion tailored photonic crystal fibers has been shown interesting for improving the multiple FWM efficiency and reducing the separation between the pump wavelengths.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region," J. Lightwave Technol. 10, 1553-1561 (1992).
    [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics, Second Edition (Academic Press, NY, 1995).
  3. C. J. McKinstrie and M. G. Raymer, "Four-wave-mixing cascades near the zero-dispersion frequency," Opt. Express 14, 9600-9610 (2006).
    [CrossRef] [PubMed]
  4. C. J. McKinstrie, S. Radic, M. G. Raymer, and L. Schenato, "Unimpaired phase-sensitive amplification by vector four-wave mixing near the zero-dispersion frequency," Opt. Express 15, 2178-2189 (2007).
    [CrossRef] [PubMed]
  5. E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, and S. V. Chernikov, "Generation of a train of fundamental solitons at a high repetition rate in optical fibers," Opt. Lett. 14, 1008 (1989).
    [CrossRef] [PubMed]
  6. J. Fatome, S. Pitois, and G. Millot, "20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers," IEEE J. Quantum Electron. 42, 1038-1046 (2006).
    [CrossRef]
  7. S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, "Generation of 20-GHz picosecond pulse train in the normal and anomalous dispersion regimes of optical fibers," Opt. Commun. 260, 301-306 (2006).
    [CrossRef]
  8. A. Zhang, H. Liu, M.S. Demokan, and H. Y. Tam, "Width and wavelength-tunable optical pulse train generation based on four-wave mixing in highly nonlinear photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 2664-2666 (2005).
    [CrossRef]
  9. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  10. S. Arismar Cerqueira Jr, J. M. Chavez Boggio, H. E. Hernandez-Figueroa, H. L. Fragnito, and J. C. Knight, "Highly efficient generation of cascaded four-wave mixing products in a Hybrid Photonic Crystal Fiber," in Proc. of European Conference on Optical Communication (ECOC 2007).
  11. S. Arismar Cerqueira Jr., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, "Hybrid photonic crystal fiber," Opt. Express 14, 926-931(2006).
    [CrossRef]
  12. M. E. Marhic, A. A. Rieznik, H. L. Fragnito, and L. G. Kazovsky, "Accurate modelling of fiber OPAs with nonlinear ellipse rotation terms in the Split-Step Fourier Method," Proceedings of OSA OAA (2006).
  13. O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband four-wave mixing generation in short optical fibers," Electron. Lett. 36, 709-711 (2000).
    [CrossRef]
  14. J. M. Chavez Boggio and H. L. Fragnito, "Simple four-wave-mixing-based method for measuring the ratio between the third- and fourth-order dispersion in optical fibers," J. Opt. Soc. Am. B 24, 2046-2054 (2007).
    [CrossRef]
  15. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, "Nearly zero ultraflattened dispersion in photonic crystal fibers," Opt. Lett. 25, 790-792 (2000).
    [CrossRef]
  16. W. H. Reeves, J. C. Knight, P. St. J. Russell, and P. J. Roberts, "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt. Express 10, 609-613 (2002).
    [PubMed]
  17. K. Inoue, "Arrangement of fiber pieces for a wide wavelength conversion range by fiber four-wave mixing," Opt. Lett. 19, 1189-1191 (1994).
    [CrossRef] [PubMed]
  18. M. E. Marhic, F. S. Yang, H. Min-Chen, and L. G. Kazovsky, "High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation," J. Lightwave Technol. 17, 210-215 (1999).
    [CrossRef]
  19. L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, "Broadband and flat parametric amplifiers using a multi-section dispersion-tailored nonlinear fiber arrangement," J. Opt. Soc. Am. B 20, 1532-1537 (2003).
    [CrossRef]

2007

2006

S. Arismar Cerqueira Jr., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, "Hybrid photonic crystal fiber," Opt. Express 14, 926-931(2006).
[CrossRef]

C. J. McKinstrie and M. G. Raymer, "Four-wave-mixing cascades near the zero-dispersion frequency," Opt. Express 14, 9600-9610 (2006).
[CrossRef] [PubMed]

J. Fatome, S. Pitois, and G. Millot, "20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers," IEEE J. Quantum Electron. 42, 1038-1046 (2006).
[CrossRef]

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, "Generation of 20-GHz picosecond pulse train in the normal and anomalous dispersion regimes of optical fibers," Opt. Commun. 260, 301-306 (2006).
[CrossRef]

2005

A. Zhang, H. Liu, M.S. Demokan, and H. Y. Tam, "Width and wavelength-tunable optical pulse train generation based on four-wave mixing in highly nonlinear photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 2664-2666 (2005).
[CrossRef]

2003

L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, "Broadband and flat parametric amplifiers using a multi-section dispersion-tailored nonlinear fiber arrangement," J. Opt. Soc. Am. B 20, 1532-1537 (2003).
[CrossRef]

2002

2000

A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, "Nearly zero ultraflattened dispersion in photonic crystal fibers," Opt. Lett. 25, 790-792 (2000).
[CrossRef]

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband four-wave mixing generation in short optical fibers," Electron. Lett. 36, 709-711 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

1999

1994

1992

K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region," J. Lightwave Technol. 10, 1553-1561 (1992).
[CrossRef]

Andres, P.

Arai, S.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband four-wave mixing generation in short optical fibers," Electron. Lett. 36, 709-711 (2000).
[CrossRef]

Arismar Cerqueira Jr, S.

Aso, O.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband four-wave mixing generation in short optical fibers," Electron. Lett. 36, 709-711 (2000).
[CrossRef]

Chavez Boggio, J. M.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Demokan, M.S.

A. Zhang, H. Liu, M.S. Demokan, and H. Y. Tam, "Width and wavelength-tunable optical pulse train generation based on four-wave mixing in highly nonlinear photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 2664-2666 (2005).
[CrossRef]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Fatome, J.

J. Fatome, S. Pitois, and G. Millot, "20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers," IEEE J. Quantum Electron. 42, 1038-1046 (2006).
[CrossRef]

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, "Generation of 20-GHz picosecond pulse train in the normal and anomalous dispersion regimes of optical fibers," Opt. Commun. 260, 301-306 (2006).
[CrossRef]

Ferrando, A.

Finot, C.

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, "Generation of 20-GHz picosecond pulse train in the normal and anomalous dispersion regimes of optical fibers," Opt. Commun. 260, 301-306 (2006).
[CrossRef]

Fragnito, H. L.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Inoue, K.

K. Inoue, "Arrangement of fiber pieces for a wide wavelength conversion range by fiber four-wave mixing," Opt. Lett. 19, 1189-1191 (1994).
[CrossRef] [PubMed]

K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region," J. Lightwave Technol. 10, 1553-1561 (1992).
[CrossRef]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Kazovsky, L. G.

Knight, J. C.

Lantz, E.

L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, "Broadband and flat parametric amplifiers using a multi-section dispersion-tailored nonlinear fiber arrangement," J. Opt. Soc. Am. B 20, 1532-1537 (2003).
[CrossRef]

Liu, H.

A. Zhang, H. Liu, M.S. Demokan, and H. Y. Tam, "Width and wavelength-tunable optical pulse train generation based on four-wave mixing in highly nonlinear photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 2664-2666 (2005).
[CrossRef]

Maillotte, H.

L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, "Broadband and flat parametric amplifiers using a multi-section dispersion-tailored nonlinear fiber arrangement," J. Opt. Soc. Am. B 20, 1532-1537 (2003).
[CrossRef]

Marhic, M. E.

McKinstrie, C. J.

Millot, G.

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, "Generation of 20-GHz picosecond pulse train in the normal and anomalous dispersion regimes of optical fibers," Opt. Commun. 260, 301-306 (2006).
[CrossRef]

J. Fatome, S. Pitois, and G. Millot, "20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers," IEEE J. Quantum Electron. 42, 1038-1046 (2006).
[CrossRef]

Min-Chen, H.

Miret, J. J.

Mussot, A.

L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, "Broadband and flat parametric amplifiers using a multi-section dispersion-tailored nonlinear fiber arrangement," J. Opt. Soc. Am. B 20, 1532-1537 (2003).
[CrossRef]

Namiki, S.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband four-wave mixing generation in short optical fibers," Electron. Lett. 36, 709-711 (2000).
[CrossRef]

Pitois, S.

J. Fatome, S. Pitois, and G. Millot, "20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers," IEEE J. Quantum Electron. 42, 1038-1046 (2006).
[CrossRef]

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, "Generation of 20-GHz picosecond pulse train in the normal and anomalous dispersion regimes of optical fibers," Opt. Commun. 260, 301-306 (2006).
[CrossRef]

Provino, L.

L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, "Broadband and flat parametric amplifiers using a multi-section dispersion-tailored nonlinear fiber arrangement," J. Opt. Soc. Am. B 20, 1532-1537 (2003).
[CrossRef]

Radic, S.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Raymer, M. G.

Reeves, W. H.

Roberts, P. J.

Russell, P. St. J.

Schenato, L.

Silvestre, E.

Sinardet, B.

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, "Generation of 20-GHz picosecond pulse train in the normal and anomalous dispersion regimes of optical fibers," Opt. Commun. 260, 301-306 (2006).
[CrossRef]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Suzuki, Y.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband four-wave mixing generation in short optical fibers," Electron. Lett. 36, 709-711 (2000).
[CrossRef]

Sylvestre, T.

L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, "Broadband and flat parametric amplifiers using a multi-section dispersion-tailored nonlinear fiber arrangement," J. Opt. Soc. Am. B 20, 1532-1537 (2003).
[CrossRef]

Tadakuma, M.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband four-wave mixing generation in short optical fibers," Electron. Lett. 36, 709-711 (2000).
[CrossRef]

Tam, H. Y.

A. Zhang, H. Liu, M.S. Demokan, and H. Y. Tam, "Width and wavelength-tunable optical pulse train generation based on four-wave mixing in highly nonlinear photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 2664-2666 (2005).
[CrossRef]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Yagi, T.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband four-wave mixing generation in short optical fibers," Electron. Lett. 36, 709-711 (2000).
[CrossRef]

Yang, F. S.

Zhang, A.

A. Zhang, H. Liu, M.S. Demokan, and H. Y. Tam, "Width and wavelength-tunable optical pulse train generation based on four-wave mixing in highly nonlinear photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 2664-2666 (2005).
[CrossRef]

Electron. Lett.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband four-wave mixing generation in short optical fibers," Electron. Lett. 36, 709-711 (2000).
[CrossRef]

IEEE J. Quantum Electron.

J. Fatome, S. Pitois, and G. Millot, "20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers," IEEE J. Quantum Electron. 42, 1038-1046 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Zhang, H. Liu, M.S. Demokan, and H. Y. Tam, "Width and wavelength-tunable optical pulse train generation based on four-wave mixing in highly nonlinear photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 2664-2666 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, "Broadband and flat parametric amplifiers using a multi-section dispersion-tailored nonlinear fiber arrangement," J. Opt. Soc. Am. B 20, 1532-1537 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, "Generation of 20-GHz picosecond pulse train in the normal and anomalous dispersion regimes of optical fibers," Opt. Commun. 260, 301-306 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Science

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Other

S. Arismar Cerqueira Jr, J. M. Chavez Boggio, H. E. Hernandez-Figueroa, H. L. Fragnito, and J. C. Knight, "Highly efficient generation of cascaded four-wave mixing products in a Hybrid Photonic Crystal Fiber," in Proc. of European Conference on Optical Communication (ECOC 2007).

M. E. Marhic, A. A. Rieznik, H. L. Fragnito, and L. G. Kazovsky, "Accurate modelling of fiber OPAs with nonlinear ellipse rotation terms in the Split-Step Fourier Method," Proceedings of OSA OAA (2006).

G. P. Agrawal, Nonlinear Fiber Optics, Second Edition (Academic Press, NY, 1995).

E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, and S. V. Chernikov, "Generation of a train of fundamental solitons at a high repetition rate in optical fibers," Opt. Lett. 14, 1008 (1989).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Length and dispersion slope analyses. (a) Number of FWM products with OSNR>30 dB as a function of the fiber length for S0=0.075 ps/nm2/km and typical HNLF parameters. (b) The same as in (a), but now fixing the fiber L=3.0 m and varying S0.

Fig.2.
Fig.2.

Experimental setup.

Fig.3.
Fig.3.

FWM products obtained at the booster output and by using STD and DSF.

Fig.4.
Fig.4.

Efficient generation of FWM products obtaining by using 2.0 m of HNLF.

Fig.5.
Fig.5.

FWM products over 80 nm with maximum power variation between the generated FWM products of only 1.2 dB.

Fig.6.
Fig.6.

FWM products obtained by using a comb-like dispersion profiled fiber.

Fig. 7.
Fig. 7.

118 FWM products spaced by 2.5 m obtained by applying the PCF 1.

Fig. 8.
Fig. 8.

Result obtained by using a CDPF formed by 10 m of PCF 2 and 2 m of HNLF.

Fig. 9.
Fig. 9.

FWM products obtained by using a 8.0 m of PCF 1.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P ( ω 4 ) E 1 E 2 E 3 * e i [ β ( ω 1 ) + β ( ω 2 ) β ( ω 3 ) ] z ,
κ = Δ κ M + Δ κ W + Δ κ NL = 0 ,
Δ κ M = [ n 3 ω 3 + n 4 ω 4 2 n 1 ω 1 ] c ,
Δ κ W = [ Δ n 3 ω 3 + Δ n 4 ω 4 ( Δ n 1 + Δ n 2 ) ω 1 ] c ,
Δ κ NL = γ ( P 1 + P 2 ) ,
Δ β = β ( ω 4 ) + β ( ω 3 ) β ( ω 1 ) β ( ω 2 )
Δ β β 2 ( ω / ) Δ ω 2 ,

Metrics